Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking

This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kieffer, M., Seignez, E., Lambert, A., Walter, E., Maurin, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6429
container_issue
container_start_page 6424
container_title
container_volume
creator Kieffer, M.
Seignez, E.
Lambert, A.
Walter, E.
Maurin, T.
description This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its results are guaranteed, in the sense that the statements made about the possible values of the state vector are mathmatically proved, although all calculations are performed approximately on a computer. Sets will thus be provided that are guaranteed to contain all values of the state that are consistent with the information available and the bounds assumed on the state perturbations and measurement errors. Complexity issues are addressed and some tools are provided to facilitate real-time implementation. Results obtained with an actual vehicle are reported.
doi_str_mv 10.1109/CDC.2005.1583192
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1583192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1583192</ieee_id><sourcerecordid>1583192</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-626b7344b4264e97bfb8379b9b2155d5d320d50abc9db152d88757929eec88aa3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRgMqWGv3gpu8wNRcJrdlGesoFAWtuizJ5K-NxsmQSRHf3oKFD87ucPgQuqJkTikxN81tM2eEiDkVmlPDTtDMKE0O40ZIRU_RhFBDK8aoPEcX4_hJCNFEygl6b_c2274AePyc3H4s-DH1MfRgM34ptgBejiV825Iy_gllhxfDEENnS0g9Lgm3MTkb8RvsQhcBr7PtvkL_cYnOtjaOMDtyil7vluvmvlo9tQ_NYlUFqkSpJJNO8bp2NZM1GOW2TnNlnHGMCuGF54x4QazrjHdUMK-1EsowA9BpbS2fout_bwCAzZAPpfl3c_yB_wGINVFQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kieffer, M. ; Seignez, E. ; Lambert, A. ; Walter, E. ; Maurin, T.</creator><creatorcontrib>Kieffer, M. ; Seignez, E. ; Lambert, A. ; Walter, E. ; Maurin, T.</creatorcontrib><description>This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its results are guaranteed, in the sense that the statements made about the possible values of the state vector are mathmatically proved, although all calculations are performed approximately on a computer. Sets will thus be provided that are guaranteed to contain all values of the state that are consistent with the information available and the bounds assumed on the state perturbations and measurement errors. Complexity issues are addressed and some tools are provided to facilitate real-time implementation. Results obtained with an actual vehicle are reported.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780395671</identifier><identifier>ISBN: 0780395670</identifier><identifier>DOI: 10.1109/CDC.2005.1583192</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Density measurement ; Equations ; Filtering ; Kalman filters ; Noise measurement ; Robustness ; State estimation ; Time measurement ; Vehicles</subject><ispartof>Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.6424-6429</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1583192$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1583192$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kieffer, M.</creatorcontrib><creatorcontrib>Seignez, E.</creatorcontrib><creatorcontrib>Lambert, A.</creatorcontrib><creatorcontrib>Walter, E.</creatorcontrib><creatorcontrib>Maurin, T.</creatorcontrib><title>Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking</title><title>Proceedings of the 44th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its results are guaranteed, in the sense that the statements made about the possible values of the state vector are mathmatically proved, although all calculations are performed approximately on a computer. Sets will thus be provided that are guaranteed to contain all values of the state that are consistent with the information available and the bounds assumed on the state perturbations and measurement errors. Complexity issues are addressed and some tools are provided to facilitate real-time implementation. Results obtained with an actual vehicle are reported.</description><subject>Bayesian methods</subject><subject>Density measurement</subject><subject>Equations</subject><subject>Filtering</subject><subject>Kalman filters</subject><subject>Noise measurement</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Time measurement</subject><subject>Vehicles</subject><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtKAzEYRgMqWGv3gpu8wNRcJrdlGesoFAWtuizJ5K-NxsmQSRHf3oKFD87ucPgQuqJkTikxN81tM2eEiDkVmlPDTtDMKE0O40ZIRU_RhFBDK8aoPEcX4_hJCNFEygl6b_c2274AePyc3H4s-DH1MfRgM34ptgBejiV825Iy_gllhxfDEENnS0g9Lgm3MTkb8RvsQhcBr7PtvkL_cYnOtjaOMDtyil7vluvmvlo9tQ_NYlUFqkSpJJNO8bp2NZM1GOW2TnNlnHGMCuGF54x4QazrjHdUMK-1EsowA9BpbS2fout_bwCAzZAPpfl3c_yB_wGINVFQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kieffer, M.</creator><creator>Seignez, E.</creator><creator>Lambert, A.</creator><creator>Walter, E.</creator><creator>Maurin, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking</title><author>Kieffer, M. ; Seignez, E. ; Lambert, A. ; Walter, E. ; Maurin, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-626b7344b4264e97bfb8379b9b2155d5d320d50abc9db152d88757929eec88aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian methods</topic><topic>Density measurement</topic><topic>Equations</topic><topic>Filtering</topic><topic>Kalman filters</topic><topic>Noise measurement</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Time measurement</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Kieffer, M.</creatorcontrib><creatorcontrib>Seignez, E.</creatorcontrib><creatorcontrib>Lambert, A.</creatorcontrib><creatorcontrib>Walter, E.</creatorcontrib><creatorcontrib>Maurin, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kieffer, M.</au><au>Seignez, E.</au><au>Lambert, A.</au><au>Walter, E.</au><au>Maurin, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking</atitle><btitle>Proceedings of the 44th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2005</date><risdate>2005</risdate><spage>6424</spage><epage>6429</epage><pages>6424-6429</pages><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><abstract>This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its results are guaranteed, in the sense that the statements made about the possible values of the state vector are mathmatically proved, although all calculations are performed approximately on a computer. Sets will thus be provided that are guaranteed to contain all values of the state that are consistent with the information available and the bounds assumed on the state perturbations and measurement errors. Complexity issues are addressed and some tools are provided to facilitate real-time implementation. Results obtained with an actual vehicle are reported.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2005.1583192</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.6424-6429
issn 0191-2216
language eng
recordid cdi_ieee_primary_1583192
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Density measurement
Equations
Filtering
Kalman filters
Noise measurement
Robustness
State estimation
Time measurement
Vehicles
title Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Guaranteed%20Robust%20Nonlinear%20State%20Estimator%20with%20Application%20to%20Global%20Vehicle%20Tracking&rft.btitle=Proceedings%20of%20the%2044th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Kieffer,%20M.&rft.date=2005&rft.spage=6424&rft.epage=6429&rft.pages=6424-6429&rft.issn=0191-2216&rft.isbn=9780780395671&rft.isbn_list=0780395670&rft_id=info:doi/10.1109/CDC.2005.1583192&rft_dat=%3Cieee_6IE%3E1583192%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1583192&rfr_iscdi=true