Utility Optimal Scheduling for General Reward States and Stability Constraint

We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal poli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chaporkar, P., Sarkar, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5137
container_issue
container_start_page 5132
container_title
container_volume
creator Chaporkar, P.
Sarkar, S.
description We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.
doi_str_mv 10.1109/CDC.2005.1582976
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1582976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1582976</ieee_id><sourcerecordid>1582976</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-3eeb17e78fd5737a21eae1d25c1000b3b4d92fe85dd30729c72d7a81187431e23</originalsourceid><addsrcrecordid>eNotT1FLwzAYDKjgnHsXfMkfaM2XLP2SR4k6hcnAueeRNl81UruRRmT_3uIGB3cc3HHH2A2IEkDYO_fgSimELkEbabE6YzOLRoxQVlcI52wiwEIhJVSX7GoYvoQQRlTVhL1ucuxiPvDVPsdv3_F180nhp4v9B293iS-opzTab_TrU-Dr7DMN3Pf_sj5G3a4fcvKxz9fsovXdQLMTT9nm6fHdPRfL1eLF3S-LKAFzoYhqQELTBo0KvQTyBEHqBsZhtarnwcqWjA5BCZS2QRnQGwCDcwUk1ZTdHnsjEW33aVyeDtvTe_UHEZ9Nyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chaporkar, P. ; Sarkar, S.</creator><creatorcontrib>Chaporkar, P. ; Sarkar, S.</creatorcontrib><description>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780395671</identifier><identifier>ISBN: 0780395670</identifier><identifier>DOI: 10.1109/CDC.2005.1582976</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buffer overflow ; Counting circuits ; Delay ; Optimal scheduling ; Probability ; Queueing analysis ; Queueing theory ; randomized algorithms ; Stability ; Statistics ; Systems engineering and theory ; utility maximization</subject><ispartof>Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5132-5137</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1582976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1582976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaporkar, P.</creatorcontrib><creatorcontrib>Sarkar, S.</creatorcontrib><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><title>Proceedings of the 44th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</description><subject>Buffer overflow</subject><subject>Counting circuits</subject><subject>Delay</subject><subject>Optimal scheduling</subject><subject>Probability</subject><subject>Queueing analysis</subject><subject>Queueing theory</subject><subject>randomized algorithms</subject><subject>Stability</subject><subject>Statistics</subject><subject>Systems engineering and theory</subject><subject>utility maximization</subject><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT1FLwzAYDKjgnHsXfMkfaM2XLP2SR4k6hcnAueeRNl81UruRRmT_3uIGB3cc3HHH2A2IEkDYO_fgSimELkEbabE6YzOLRoxQVlcI52wiwEIhJVSX7GoYvoQQRlTVhL1ucuxiPvDVPsdv3_F180nhp4v9B293iS-opzTab_TrU-Dr7DMN3Pf_sj5G3a4fcvKxz9fsovXdQLMTT9nm6fHdPRfL1eLF3S-LKAFzoYhqQELTBo0KvQTyBEHqBsZhtarnwcqWjA5BCZS2QRnQGwCDcwUk1ZTdHnsjEW33aVyeDtvTe_UHEZ9Nyg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Chaporkar, P.</creator><creator>Sarkar, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><author>Chaporkar, P. ; Sarkar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-3eeb17e78fd5737a21eae1d25c1000b3b4d92fe85dd30729c72d7a81187431e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Buffer overflow</topic><topic>Counting circuits</topic><topic>Delay</topic><topic>Optimal scheduling</topic><topic>Probability</topic><topic>Queueing analysis</topic><topic>Queueing theory</topic><topic>randomized algorithms</topic><topic>Stability</topic><topic>Statistics</topic><topic>Systems engineering and theory</topic><topic>utility maximization</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaporkar, P.</creatorcontrib><creatorcontrib>Sarkar, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaporkar, P.</au><au>Sarkar, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Utility Optimal Scheduling for General Reward States and Stability Constraint</atitle><btitle>Proceedings of the 44th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2005</date><risdate>2005</risdate><spage>5132</spage><epage>5137</epage><pages>5132-5137</pages><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><abstract>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2005.1582976</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5132-5137
issn 0191-2216
language eng
recordid cdi_ieee_primary_1582976
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buffer overflow
Counting circuits
Delay
Optimal scheduling
Probability
Queueing analysis
Queueing theory
randomized algorithms
Stability
Statistics
Systems engineering and theory
utility maximization
title Utility Optimal Scheduling for General Reward States and Stability Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Utility%20Optimal%20Scheduling%20for%20General%20Reward%20States%20and%20Stability%20Constraint&rft.btitle=Proceedings%20of%20the%2044th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Chaporkar,%20P.&rft.date=2005&rft.spage=5132&rft.epage=5137&rft.pages=5132-5137&rft.issn=0191-2216&rft.isbn=9780780395671&rft.isbn_list=0780395670&rft_id=info:doi/10.1109/CDC.2005.1582976&rft_dat=%3Cieee_6IE%3E1582976%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1582976&rfr_iscdi=true