Utility Optimal Scheduling for General Reward States and Stability Constraint
We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal poli...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5137 |
---|---|
container_issue | |
container_start_page | 5132 |
container_title | |
container_volume | |
creator | Chaporkar, P. Sarkar, S. |
description | We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes. |
doi_str_mv | 10.1109/CDC.2005.1582976 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1582976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1582976</ieee_id><sourcerecordid>1582976</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-3eeb17e78fd5737a21eae1d25c1000b3b4d92fe85dd30729c72d7a81187431e23</originalsourceid><addsrcrecordid>eNotT1FLwzAYDKjgnHsXfMkfaM2XLP2SR4k6hcnAueeRNl81UruRRmT_3uIGB3cc3HHH2A2IEkDYO_fgSimELkEbabE6YzOLRoxQVlcI52wiwEIhJVSX7GoYvoQQRlTVhL1ucuxiPvDVPsdv3_F180nhp4v9B293iS-opzTab_TrU-Dr7DMN3Pf_sj5G3a4fcvKxz9fsovXdQLMTT9nm6fHdPRfL1eLF3S-LKAFzoYhqQELTBo0KvQTyBEHqBsZhtarnwcqWjA5BCZS2QRnQGwCDcwUk1ZTdHnsjEW33aVyeDtvTe_UHEZ9Nyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chaporkar, P. ; Sarkar, S.</creator><creatorcontrib>Chaporkar, P. ; Sarkar, S.</creatorcontrib><description>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780395671</identifier><identifier>ISBN: 0780395670</identifier><identifier>DOI: 10.1109/CDC.2005.1582976</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buffer overflow ; Counting circuits ; Delay ; Optimal scheduling ; Probability ; Queueing analysis ; Queueing theory ; randomized algorithms ; Stability ; Statistics ; Systems engineering and theory ; utility maximization</subject><ispartof>Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5132-5137</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1582976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1582976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaporkar, P.</creatorcontrib><creatorcontrib>Sarkar, S.</creatorcontrib><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><title>Proceedings of the 44th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</description><subject>Buffer overflow</subject><subject>Counting circuits</subject><subject>Delay</subject><subject>Optimal scheduling</subject><subject>Probability</subject><subject>Queueing analysis</subject><subject>Queueing theory</subject><subject>randomized algorithms</subject><subject>Stability</subject><subject>Statistics</subject><subject>Systems engineering and theory</subject><subject>utility maximization</subject><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT1FLwzAYDKjgnHsXfMkfaM2XLP2SR4k6hcnAueeRNl81UruRRmT_3uIGB3cc3HHH2A2IEkDYO_fgSimELkEbabE6YzOLRoxQVlcI52wiwEIhJVSX7GoYvoQQRlTVhL1ucuxiPvDVPsdv3_F180nhp4v9B293iS-opzTab_TrU-Dr7DMN3Pf_sj5G3a4fcvKxz9fsovXdQLMTT9nm6fHdPRfL1eLF3S-LKAFzoYhqQELTBo0KvQTyBEHqBsZhtarnwcqWjA5BCZS2QRnQGwCDcwUk1ZTdHnsjEW33aVyeDtvTe_UHEZ9Nyg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Chaporkar, P.</creator><creator>Sarkar, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Utility Optimal Scheduling for General Reward States and Stability Constraint</title><author>Chaporkar, P. ; Sarkar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-3eeb17e78fd5737a21eae1d25c1000b3b4d92fe85dd30729c72d7a81187431e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Buffer overflow</topic><topic>Counting circuits</topic><topic>Delay</topic><topic>Optimal scheduling</topic><topic>Probability</topic><topic>Queueing analysis</topic><topic>Queueing theory</topic><topic>randomized algorithms</topic><topic>Stability</topic><topic>Statistics</topic><topic>Systems engineering and theory</topic><topic>utility maximization</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaporkar, P.</creatorcontrib><creatorcontrib>Sarkar, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaporkar, P.</au><au>Sarkar, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Utility Optimal Scheduling for General Reward States and Stability Constraint</atitle><btitle>Proceedings of the 44th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2005</date><risdate>2005</risdate><spage>5132</spage><epage>5137</epage><pages>5132-5137</pages><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><abstract>We consider a queueing system with n parallel queues, which receives a reward for the service it provides. Our aim is to maximize the expected reward obtained per unit time (utility) while ensuring that the mean queue length in each of the queues is bounded (stability). We show that the optimal policy has counter intuitive properties because of the general reward states and stability constraint. For example, the greedy policy of serving a customer that fetches maximum reward need not be optimal. In addition, the optimal policy may belong to a class of non work-conserving policies. We obtain two different policies that attain the above optimality goal. The first policy arbitrates service randomly based on the current reward states and probabilities that depend on system statistics. The second policy arbitrates service deterministically based only on the queue lengths and the current reward states, and does not require any knowledge of the system statistics. The proposed policies are optimal in a large class of policies that includes off-line policies, which use knowledge of past, present and even future arrival and reward states in their decision processes.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2005.1582976</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5132-5137 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_1582976 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buffer overflow Counting circuits Delay Optimal scheduling Probability Queueing analysis Queueing theory randomized algorithms Stability Statistics Systems engineering and theory utility maximization |
title | Utility Optimal Scheduling for General Reward States and Stability Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Utility%20Optimal%20Scheduling%20for%20General%20Reward%20States%20and%20Stability%20Constraint&rft.btitle=Proceedings%20of%20the%2044th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Chaporkar,%20P.&rft.date=2005&rft.spage=5132&rft.epage=5137&rft.pages=5132-5137&rft.issn=0191-2216&rft.isbn=9780780395671&rft.isbn_list=0780395670&rft_id=info:doi/10.1109/CDC.2005.1582976&rft_dat=%3Cieee_6IE%3E1582976%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1582976&rfr_iscdi=true |