Multivariate statistical modeling of images with the curvelet transform

This paper proposes a theoretical and statistical study to characterize the dependencies of the curvelet coefficients of images across position, scale and orientation. Our study was based on estimated histograms of the marginal and joint distributions to study the statistical properties of curvelet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boubchir, L., Fadili, J.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 750
container_issue
container_start_page 747
container_title
container_volume 2
creator Boubchir, L.
Fadili, J.M.
description This paper proposes a theoretical and statistical study to characterize the dependencies of the curvelet coefficients of images across position, scale and orientation. Our study was based on estimated histograms of the marginal and joint distributions to study the statistical properties of curvelet coefficients, and on the mutual information to measure the level of dependence between these coefficients. Finally, a novel multivariate statistical model, namely the anisotropic multivariate generalized gaussian (AMGGD), was proposed to characterize these dependencies.
doi_str_mv 10.1109/ISSPA.2005.1581046
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_1581046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1581046</ieee_id><sourcerecordid>oai_HAL_hal_01088628v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-bde71e58e5e4b5a9eb696cbeff852a0ca691f51fbfa4bf7ca78bbde27e111ccd3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdEUGr_gF726qFxJ8kmu8dStC1UFKrnMLuZbVaSRrLbiv_elBYfDwYe3wzDY-weRAIg9NN6u32fJ6kQMgGpQOTFFZvqUonRmU7zLL9h0xC-xKhMFzIXt2z5emijP-LgMRIPEaMP0VtsedfX1Pr9jveO-w53FPiPjw2PDXF7GI7UUuRxwH1w_dDdsWuHbaDpZU7Y58vzx2I127wt14v5ZtakMoszU1MJJBVJyo1ETabQhTXknJIpCouFBifBGYe5caXFUplxJy0JAKytswl7PN9tsK2-h_Gx4bfq0Ver-aY6ZQKEUkWqjjCyD2fWE9E_fKkm-wMM61uv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multivariate statistical modeling of images with the curvelet transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boubchir, L. ; Fadili, J.M.</creator><creatorcontrib>Boubchir, L. ; Fadili, J.M.</creatorcontrib><description>This paper proposes a theoretical and statistical study to characterize the dependencies of the curvelet coefficients of images across position, scale and orientation. Our study was based on estimated histograms of the marginal and joint distributions to study the statistical properties of curvelet coefficients, and on the mutual information to measure the level of dependence between these coefficients. Finally, a novel multivariate statistical model, namely the anisotropic multivariate generalized gaussian (AMGGD), was proposed to characterize these dependencies.</description><identifier>ISBN: 9780780392434</identifier><identifier>ISBN: 0780392434</identifier><identifier>DOI: 10.1109/ISSPA.2005.1581046</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anisotropic magnetoresistance ; Computer Science ; Histograms ; Image coding ; Image Processing ; Image representation ; Image restoration ; Mutual information ; Object detection ; Statistics ; Wavelet transforms</subject><ispartof>Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, 2005, Vol.2, p.747-750</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1581046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1581046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01088628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boubchir, L.</creatorcontrib><creatorcontrib>Fadili, J.M.</creatorcontrib><title>Multivariate statistical modeling of images with the curvelet transform</title><title>Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005</title><addtitle>ISSPA</addtitle><description>This paper proposes a theoretical and statistical study to characterize the dependencies of the curvelet coefficients of images across position, scale and orientation. Our study was based on estimated histograms of the marginal and joint distributions to study the statistical properties of curvelet coefficients, and on the mutual information to measure the level of dependence between these coefficients. Finally, a novel multivariate statistical model, namely the anisotropic multivariate generalized gaussian (AMGGD), was proposed to characterize these dependencies.</description><subject>Anisotropic magnetoresistance</subject><subject>Computer Science</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image Processing</subject><subject>Image representation</subject><subject>Image restoration</subject><subject>Mutual information</subject><subject>Object detection</subject><subject>Statistics</subject><subject>Wavelet transforms</subject><isbn>9780780392434</isbn><isbn>0780392434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdEUGr_gF726qFxJ8kmu8dStC1UFKrnMLuZbVaSRrLbiv_elBYfDwYe3wzDY-weRAIg9NN6u32fJ6kQMgGpQOTFFZvqUonRmU7zLL9h0xC-xKhMFzIXt2z5emijP-LgMRIPEaMP0VtsedfX1Pr9jveO-w53FPiPjw2PDXF7GI7UUuRxwH1w_dDdsWuHbaDpZU7Y58vzx2I127wt14v5ZtakMoszU1MJJBVJyo1ETabQhTXknJIpCouFBifBGYe5caXFUplxJy0JAKytswl7PN9tsK2-h_Gx4bfq0Ver-aY6ZQKEUkWqjjCyD2fWE9E_fKkm-wMM61uv</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Boubchir, L.</creator><creator>Fadili, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2005</creationdate><title>Multivariate statistical modeling of images with the curvelet transform</title><author>Boubchir, L. ; Fadili, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-bde71e58e5e4b5a9eb696cbeff852a0ca691f51fbfa4bf7ca78bbde27e111ccd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Computer Science</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image Processing</topic><topic>Image representation</topic><topic>Image restoration</topic><topic>Mutual information</topic><topic>Object detection</topic><topic>Statistics</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Boubchir, L.</creatorcontrib><creatorcontrib>Fadili, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boubchir, L.</au><au>Fadili, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multivariate statistical modeling of images with the curvelet transform</atitle><btitle>Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005</btitle><stitle>ISSPA</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>747</spage><epage>750</epage><pages>747-750</pages><isbn>9780780392434</isbn><isbn>0780392434</isbn><abstract>This paper proposes a theoretical and statistical study to characterize the dependencies of the curvelet coefficients of images across position, scale and orientation. Our study was based on estimated histograms of the marginal and joint distributions to study the statistical properties of curvelet coefficients, and on the mutual information to measure the level of dependence between these coefficients. Finally, a novel multivariate statistical model, namely the anisotropic multivariate generalized gaussian (AMGGD), was proposed to characterize these dependencies.</abstract><pub>IEEE</pub><doi>10.1109/ISSPA.2005.1581046</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780392434
ispartof Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, 2005, Vol.2, p.747-750
issn
language eng
recordid cdi_ieee_primary_1581046
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anisotropic magnetoresistance
Computer Science
Histograms
Image coding
Image Processing
Image representation
Image restoration
Mutual information
Object detection
Statistics
Wavelet transforms
title Multivariate statistical modeling of images with the curvelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multivariate%20statistical%20modeling%20of%20images%20with%20the%20curvelet%20transform&rft.btitle=Proceedings%20of%20the%20Eighth%20International%20Symposium%20on%20Signal%20Processing%20and%20Its%20Applications,%202005&rft.au=Boubchir,%20L.&rft.date=2005&rft.volume=2&rft.spage=747&rft.epage=750&rft.pages=747-750&rft.isbn=9780780392434&rft.isbn_list=0780392434&rft_id=info:doi/10.1109/ISSPA.2005.1581046&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_01088628v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1581046&rfr_iscdi=true