Learning in the Presence of Self-Interested Agents

In many situations a principal gathers a data sample containing positive and negative examples of a concept to induce a classification rule using a machine learning algorithm. Although learning algorithms differ from each other in various aspects, there is one essential issue that is common to all:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aytug, H., Boylu, F., Koehler, G.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158b
container_issue
container_start_page 158b
container_title
container_volume 7
creator Aytug, H.
Boylu, F.
Koehler, G.J.
description In many situations a principal gathers a data sample containing positive and negative examples of a concept to induce a classification rule using a machine learning algorithm. Although learning algorithms differ from each other in various aspects, there is one essential issue that is common to all: the assumption that there is no strategic behavior inherent in the sample data generation process. In that respect, we ask the question "what if the observed attributes are being deliberately modified by the acts of some self-interested agents who will gain a preferred classification by engaging in such behavior". Therein such cases, there is a need for anticipating this kind of strategic behavior and incorporating it into the learning process. Classical learning approaches do not consider the existence of such behavior. In this paper we study the need for this kind of a paradigm and outline related research issues.
doi_str_mv 10.1109/HICSS.2006.250
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1579613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1579613</ieee_id><sourcerecordid>1579613</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-75e96232c1a1e0ee0baaa79af66c7c2a5c7fe434f3a62bea7a68da7888ee06d3</originalsourceid><addsrcrecordid>eNotjM1KxDAURoM_YB1n68ZNXiD1JmlumuVQdKZQmIG6H-60N2NljNJ249tb0LP54PBxhHjUkGsN4XlXV22bGwDMjYMrkRnnjcISzbW4B4_BLdq7G5FpZ0FpBHcn1tP0AQuF0x6LTJiGaUxDOsshyfmd5WHkiVPH8ivKli9R1Wnmxc3cy82Z0zw9iNtIl4nX_7sS7evLW7VTzX5bV5tGDQFm5R0HNNZ0mjQDM5yIyAeKiJ3vDLnORy5sES2hOTF5wrInX5bl8sXersTTX3Vg5uP3OHzS-HPUzgfU1v4C5IVFcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning in the Presence of Self-Interested Agents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aytug, H. ; Boylu, F. ; Koehler, G.J.</creator><creatorcontrib>Aytug, H. ; Boylu, F. ; Koehler, G.J.</creatorcontrib><description>In many situations a principal gathers a data sample containing positive and negative examples of a concept to induce a classification rule using a machine learning algorithm. Although learning algorithms differ from each other in various aspects, there is one essential issue that is common to all: the assumption that there is no strategic behavior inherent in the sample data generation process. In that respect, we ask the question "what if the observed attributes are being deliberately modified by the acts of some self-interested agents who will gain a preferred classification by engaging in such behavior". Therein such cases, there is a need for anticipating this kind of strategic behavior and incorporating it into the learning process. Classical learning approaches do not consider the existence of such behavior. In this paper we study the need for this kind of a paradigm and outline related research issues.</description><identifier>ISSN: 1530-1605</identifier><identifier>ISBN: 0769525075</identifier><identifier>ISBN: 9780769525075</identifier><identifier>EISSN: 2572-6862</identifier><identifier>DOI: 10.1109/HICSS.2006.250</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Educational institutions ; Industrial training ; Learning systems ; Machine learning ; Machine learning algorithms ; Mining industry ; Supervised learning ; Text categorization</subject><ispartof>Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06), 2006, Vol.7, p.158b-158b</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1579613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1579613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aytug, H.</creatorcontrib><creatorcontrib>Boylu, F.</creatorcontrib><creatorcontrib>Koehler, G.J.</creatorcontrib><title>Learning in the Presence of Self-Interested Agents</title><title>Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)</title><addtitle>HICSS</addtitle><description>In many situations a principal gathers a data sample containing positive and negative examples of a concept to induce a classification rule using a machine learning algorithm. Although learning algorithms differ from each other in various aspects, there is one essential issue that is common to all: the assumption that there is no strategic behavior inherent in the sample data generation process. In that respect, we ask the question "what if the observed attributes are being deliberately modified by the acts of some self-interested agents who will gain a preferred classification by engaging in such behavior". Therein such cases, there is a need for anticipating this kind of strategic behavior and incorporating it into the learning process. Classical learning approaches do not consider the existence of such behavior. In this paper we study the need for this kind of a paradigm and outline related research issues.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Educational institutions</subject><subject>Industrial training</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mining industry</subject><subject>Supervised learning</subject><subject>Text categorization</subject><issn>1530-1605</issn><issn>2572-6862</issn><isbn>0769525075</isbn><isbn>9780769525075</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxDAURoM_YB1n68ZNXiD1JmlumuVQdKZQmIG6H-60N2NljNJ249tb0LP54PBxhHjUkGsN4XlXV22bGwDMjYMrkRnnjcISzbW4B4_BLdq7G5FpZ0FpBHcn1tP0AQuF0x6LTJiGaUxDOsshyfmd5WHkiVPH8ivKli9R1Wnmxc3cy82Z0zw9iNtIl4nX_7sS7evLW7VTzX5bV5tGDQFm5R0HNNZ0mjQDM5yIyAeKiJ3vDLnORy5sES2hOTF5wrInX5bl8sXersTTX3Vg5uP3OHzS-HPUzgfU1v4C5IVFcQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Aytug, H.</creator><creator>Boylu, F.</creator><creator>Koehler, G.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Learning in the Presence of Self-Interested Agents</title><author>Aytug, H. ; Boylu, F. ; Koehler, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-75e96232c1a1e0ee0baaa79af66c7c2a5c7fe434f3a62bea7a68da7888ee06d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Educational institutions</topic><topic>Industrial training</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mining industry</topic><topic>Supervised learning</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Aytug, H.</creatorcontrib><creatorcontrib>Boylu, F.</creatorcontrib><creatorcontrib>Koehler, G.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aytug, H.</au><au>Boylu, F.</au><au>Koehler, G.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning in the Presence of Self-Interested Agents</atitle><btitle>Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)</btitle><stitle>HICSS</stitle><date>2006</date><risdate>2006</risdate><volume>7</volume><spage>158b</spage><epage>158b</epage><pages>158b-158b</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><isbn>0769525075</isbn><isbn>9780769525075</isbn><abstract>In many situations a principal gathers a data sample containing positive and negative examples of a concept to induce a classification rule using a machine learning algorithm. Although learning algorithms differ from each other in various aspects, there is one essential issue that is common to all: the assumption that there is no strategic behavior inherent in the sample data generation process. In that respect, we ask the question "what if the observed attributes are being deliberately modified by the acts of some self-interested agents who will gain a preferred classification by engaging in such behavior". Therein such cases, there is a need for anticipating this kind of strategic behavior and incorporating it into the learning process. Classical learning approaches do not consider the existence of such behavior. In this paper we study the need for this kind of a paradigm and outline related research issues.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2006.250</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1605
ispartof Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06), 2006, Vol.7, p.158b-158b
issn 1530-1605
2572-6862
language eng
recordid cdi_ieee_primary_1579613
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Data mining
Educational institutions
Industrial training
Learning systems
Machine learning
Machine learning algorithms
Mining industry
Supervised learning
Text categorization
title Learning in the Presence of Self-Interested Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20in%20the%20Presence%20of%20Self-Interested%20Agents&rft.btitle=Proceedings%20of%20the%2039th%20Annual%20Hawaii%20International%20Conference%20on%20System%20Sciences%20(HICSS'06)&rft.au=Aytug,%20H.&rft.date=2006&rft.volume=7&rft.spage=158b&rft.epage=158b&rft.pages=158b-158b&rft.issn=1530-1605&rft.eissn=2572-6862&rft.isbn=0769525075&rft.isbn_list=9780769525075&rft_id=info:doi/10.1109/HICSS.2006.250&rft_dat=%3Cieee_6IE%3E1579613%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1579613&rfr_iscdi=true