Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach
This paper intends to show how two different methodologies, a Monte Carlo simulation method and a connectionist approach can be used to estimate the total time assessment in drilling and completion operations of oil wells in deep waters. The former approach performs a Monte Carlo simulation based on...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 6 pp. |
container_title | |
container_volume | |
creator | Coelho, D.K. Roisenberg, M. Filho, P.Jd.F. Jacinto, C.M.C. |
description | This paper intends to show how two different methodologies, a Monte Carlo simulation method and a connectionist approach can be used to estimate the total time assessment in drilling and completion operations of oil wells in deep waters. The former approach performs a Monte Carlo simulation based on data from field operations. In the later one, correlations and regularities in parameters selected from a petroleum company database were detected using a competitive neural network, and then, a feedforward neural network was trained to estimate the average, standard deviation and total time wasted in the accomplishment of the well. At the end, the results obtained by both models are compared. The analyst could evaluate the precision of the estimated total-time based on geometric and technological parameters provided by the neural network tool, with those supplied by the traditional Monte Carlo method based on data of the drilling and completion operations. |
doi_str_mv | 10.1109/WSC.2005.1574466 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1574466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1574466</ieee_id><sourcerecordid>1574466</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ee963dc060b46ac6bf941c4511bc3309cd114f45c5957ce983b1993f38f355ac3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMf4Da9F7zJH-h83yVpm0spfsFE0IGXI03fajRtStIx9Nc7566ec3OeA4exS4Q5Iujrt9dqvgBQc1SFlHl-xCaoVJlJAeqYTaEoQWiFGk7YBEqNWVGI_IxNU_oEwFLhYsJ-Xlz64iYlSqmjfuSh5U103rv-nZu-4TZ0g6fRhZ6HgaL5S4m7ng80xuBp0_EteZ_4Ju0r_Cn0I_HKRB_2AsN72kTjdxi3Ie7GhiEGYz_O2WlrfKKLA2dsdXe7qh6y5fP9Y3WzzJyGMSPSuWgs5FDL3Ni8brVEKxVibYUAbRtE2UpllVaFJV2KGrUWrShboZSxYsau_rWOiNZDdJ2J3-vDZeIXawtgEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Coelho, D.K. ; Roisenberg, M. ; Filho, P.Jd.F. ; Jacinto, C.M.C.</creator><creatorcontrib>Coelho, D.K. ; Roisenberg, M. ; Filho, P.Jd.F. ; Jacinto, C.M.C.</creatorcontrib><description>This paper intends to show how two different methodologies, a Monte Carlo simulation method and a connectionist approach can be used to estimate the total time assessment in drilling and completion operations of oil wells in deep waters. The former approach performs a Monte Carlo simulation based on data from field operations. In the later one, correlations and regularities in parameters selected from a petroleum company database were detected using a competitive neural network, and then, a feedforward neural network was trained to estimate the average, standard deviation and total time wasted in the accomplishment of the well. At the end, the results obtained by both models are compared. The analyst could evaluate the precision of the estimated total-time based on geometric and technological parameters provided by the neural network tool, with those supplied by the traditional Monte Carlo method based on data of the drilling and completion operations.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 0780395190</identifier><identifier>ISBN: 9780780395190</identifier><identifier>EISSN: 1558-4305</identifier><identifier>DOI: 10.1109/WSC.2005.1574466</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Drilling ; Intelligent networks ; Monte Carlo methods ; Neural networks ; Petroleum ; Risk analysis ; Risk management ; Uncertainty</subject><ispartof>Proceedings of the Winter Simulation Conference, 2005, 2005, p.6 pp.</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1574466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1574466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Coelho, D.K.</creatorcontrib><creatorcontrib>Roisenberg, M.</creatorcontrib><creatorcontrib>Filho, P.Jd.F.</creatorcontrib><creatorcontrib>Jacinto, C.M.C.</creatorcontrib><title>Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach</title><title>Proceedings of the Winter Simulation Conference, 2005</title><addtitle>WSC</addtitle><description>This paper intends to show how two different methodologies, a Monte Carlo simulation method and a connectionist approach can be used to estimate the total time assessment in drilling and completion operations of oil wells in deep waters. The former approach performs a Monte Carlo simulation based on data from field operations. In the later one, correlations and regularities in parameters selected from a petroleum company database were detected using a competitive neural network, and then, a feedforward neural network was trained to estimate the average, standard deviation and total time wasted in the accomplishment of the well. At the end, the results obtained by both models are compared. The analyst could evaluate the precision of the estimated total-time based on geometric and technological parameters provided by the neural network tool, with those supplied by the traditional Monte Carlo method based on data of the drilling and completion operations.</description><subject>Costs</subject><subject>Drilling</subject><subject>Intelligent networks</subject><subject>Monte Carlo methods</subject><subject>Neural networks</subject><subject>Petroleum</subject><subject>Risk analysis</subject><subject>Risk management</subject><subject>Uncertainty</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>0780395190</isbn><isbn>9780780395190</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF1LwzAYhYMf4Da9F7zJH-h83yVpm0spfsFE0IGXI03fajRtStIx9Nc7566ec3OeA4exS4Q5Iujrt9dqvgBQc1SFlHl-xCaoVJlJAeqYTaEoQWiFGk7YBEqNWVGI_IxNU_oEwFLhYsJ-Xlz64iYlSqmjfuSh5U103rv-nZu-4TZ0g6fRhZ6HgaL5S4m7ng80xuBp0_EteZ_4Ju0r_Cn0I_HKRB_2AsN72kTjdxi3Ie7GhiEGYz_O2WlrfKKLA2dsdXe7qh6y5fP9Y3WzzJyGMSPSuWgs5FDL3Ni8brVEKxVibYUAbRtE2UpllVaFJV2KGrUWrShboZSxYsau_rWOiNZDdJ2J3-vDZeIXawtgEQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Coelho, D.K.</creator><creator>Roisenberg, M.</creator><creator>Filho, P.Jd.F.</creator><creator>Jacinto, C.M.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach</title><author>Coelho, D.K. ; Roisenberg, M. ; Filho, P.Jd.F. ; Jacinto, C.M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ee963dc060b46ac6bf941c4511bc3309cd114f45c5957ce983b1993f38f355ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Costs</topic><topic>Drilling</topic><topic>Intelligent networks</topic><topic>Monte Carlo methods</topic><topic>Neural networks</topic><topic>Petroleum</topic><topic>Risk analysis</topic><topic>Risk management</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Coelho, D.K.</creatorcontrib><creatorcontrib>Roisenberg, M.</creatorcontrib><creatorcontrib>Filho, P.Jd.F.</creatorcontrib><creatorcontrib>Jacinto, C.M.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coelho, D.K.</au><au>Roisenberg, M.</au><au>Filho, P.Jd.F.</au><au>Jacinto, C.M.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach</atitle><btitle>Proceedings of the Winter Simulation Conference, 2005</btitle><stitle>WSC</stitle><date>2005</date><risdate>2005</risdate><spage>6 pp.</spage><pages>6 pp.-</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>0780395190</isbn><isbn>9780780395190</isbn><abstract>This paper intends to show how two different methodologies, a Monte Carlo simulation method and a connectionist approach can be used to estimate the total time assessment in drilling and completion operations of oil wells in deep waters. The former approach performs a Monte Carlo simulation based on data from field operations. In the later one, correlations and regularities in parameters selected from a petroleum company database were detected using a competitive neural network, and then, a feedforward neural network was trained to estimate the average, standard deviation and total time wasted in the accomplishment of the well. At the end, the results obtained by both models are compared. The analyst could evaluate the precision of the estimated total-time based on geometric and technological parameters provided by the neural network tool, with those supplied by the traditional Monte Carlo method based on data of the drilling and completion operations.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2005.1574466</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the Winter Simulation Conference, 2005, 2005, p.6 pp. |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_1574466 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Costs Drilling Intelligent networks Monte Carlo methods Neural networks Petroleum Risk analysis Risk management Uncertainty |
title | Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Risk%20assessment%20of%20drilling%20and%20completion%20operations%20in%20petroleum%20wells%20using%20a%20Monte%20Carlo%20and%20a%20neural%20network%20approach&rft.btitle=Proceedings%20of%20the%20Winter%20Simulation%20Conference,%202005&rft.au=Coelho,%20D.K.&rft.date=2005&rft.spage=6%20pp.&rft.pages=6%20pp.-&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=0780395190&rft.isbn_list=9780780395190&rft_id=info:doi/10.1109/WSC.2005.1574466&rft_dat=%3Cieee_6IE%3E1574466%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1574466&rfr_iscdi=true |