A weighted Pseudo-Zernike feature extractor for face recognition

Pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. In this paper, a weighted Pseudo-Zernike feature is introduced for face recognition. We define a weight function based on the face local entropy. By this weight function, the role of high information region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alirezaee, S., Ahmadi, M., Aghaeinia, H., Faez, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2132 Vol. 3
container_issue
container_start_page 2128
container_title
container_volume 3
creator Alirezaee, S.
Ahmadi, M.
Aghaeinia, H.
Faez, K.
description Pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. In this paper, a weighted Pseudo-Zernike feature is introduced for face recognition. We define a weight function based on the face local entropy. By this weight function, the role of high information region, i.e. eyes, noses and lips, will be intensified on the extracted features. For classification, a single hidden layer feedforward neural network has been trained. To evaluate the performance of the proposed technique, experimental studies are carried out on the ORL database images of Cambridge University. The numerical results show 98.5% recognition rate on the ORL database with the order 8 of weighted Pseudo-Zernike feature and 44, 98, 40 neurons for the input, hidden, and output layers while this amount is 96% for the original Pseudo-Zernike.
doi_str_mv 10.1109/ICSMC.2005.1571463
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1571463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1571463</ieee_id><sourcerecordid>1571463</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-df8732575624f722b1bd2e592117dc97b022bb6bc13f739579d9d184a6587d073</originalsourceid><addsrcrecordid>eNotj91Kw0AUhBd_wFr7AnqTF0jcczabs3tnCVYLFQUVxJuSZE_q-pPIZov69kYszDDwXQwzQpyCzACkPV-W9zdlhlLqDDRBXqg9MUFNlEKh9b6YWTJylLJoTX4gJiALTC3i05E4HoZXKVHmYCbiYp58sd-8RHbJ3cBb16fPHDr_xknLVdwGTvg7hqqJfUjaP1cNJ4GbftP56PvuRBy21fvAs11OxePi8qG8Tle3V8tyvko9kI6paw2pcaAuMG8JsYbaIWuLAOQaS7UcWV3UDaiWlNVknXVg8qrQhpwkNRVn_72emdefwX9U4We9O69-ASe1Sv8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A weighted Pseudo-Zernike feature extractor for face recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alirezaee, S. ; Ahmadi, M. ; Aghaeinia, H. ; Faez, K.</creator><creatorcontrib>Alirezaee, S. ; Ahmadi, M. ; Aghaeinia, H. ; Faez, K.</creatorcontrib><description>Pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. In this paper, a weighted Pseudo-Zernike feature is introduced for face recognition. We define a weight function based on the face local entropy. By this weight function, the role of high information region, i.e. eyes, noses and lips, will be intensified on the extracted features. For classification, a single hidden layer feedforward neural network has been trained. To evaluate the performance of the proposed technique, experimental studies are carried out on the ORL database images of Cambridge University. The numerical results show 98.5% recognition rate on the ORL database with the order 8 of weighted Pseudo-Zernike feature and 44, 98, 40 neurons for the input, hidden, and output layers while this amount is 96% for the original Pseudo-Zernike.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9780780392984</identifier><identifier>ISBN: 0780392981</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2005.1571463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Entropy ; Eyes ; Face recognition ; Feature extraction ; Image databases ; Lips ; Nose ; Polynomials ; Pseudo-Zernike moment ; Spatial databases</subject><ispartof>2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.3, p.2128-2132 Vol. 3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1571463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1571463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alirezaee, S.</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><creatorcontrib>Aghaeinia, H.</creatorcontrib><creatorcontrib>Faez, K.</creatorcontrib><title>A weighted Pseudo-Zernike feature extractor for face recognition</title><title>2005 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>Pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. In this paper, a weighted Pseudo-Zernike feature is introduced for face recognition. We define a weight function based on the face local entropy. By this weight function, the role of high information region, i.e. eyes, noses and lips, will be intensified on the extracted features. For classification, a single hidden layer feedforward neural network has been trained. To evaluate the performance of the proposed technique, experimental studies are carried out on the ORL database images of Cambridge University. The numerical results show 98.5% recognition rate on the ORL database with the order 8 of weighted Pseudo-Zernike feature and 44, 98, 40 neurons for the input, hidden, and output layers while this amount is 96% for the original Pseudo-Zernike.</description><subject>Data mining</subject><subject>Entropy</subject><subject>Eyes</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image databases</subject><subject>Lips</subject><subject>Nose</subject><subject>Polynomials</subject><subject>Pseudo-Zernike moment</subject><subject>Spatial databases</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9780780392984</isbn><isbn>0780392981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91Kw0AUhBd_wFr7AnqTF0jcczabs3tnCVYLFQUVxJuSZE_q-pPIZov69kYszDDwXQwzQpyCzACkPV-W9zdlhlLqDDRBXqg9MUFNlEKh9b6YWTJylLJoTX4gJiALTC3i05E4HoZXKVHmYCbiYp58sd-8RHbJ3cBb16fPHDr_xknLVdwGTvg7hqqJfUjaP1cNJ4GbftP56PvuRBy21fvAs11OxePi8qG8Tle3V8tyvko9kI6paw2pcaAuMG8JsYbaIWuLAOQaS7UcWV3UDaiWlNVknXVg8qrQhpwkNRVn_72emdefwX9U4We9O69-ASe1Sv8</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Alirezaee, S.</creator><creator>Ahmadi, M.</creator><creator>Aghaeinia, H.</creator><creator>Faez, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A weighted Pseudo-Zernike feature extractor for face recognition</title><author>Alirezaee, S. ; Ahmadi, M. ; Aghaeinia, H. ; Faez, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-df8732575624f722b1bd2e592117dc97b022bb6bc13f739579d9d184a6587d073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data mining</topic><topic>Entropy</topic><topic>Eyes</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image databases</topic><topic>Lips</topic><topic>Nose</topic><topic>Polynomials</topic><topic>Pseudo-Zernike moment</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Alirezaee, S.</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><creatorcontrib>Aghaeinia, H.</creatorcontrib><creatorcontrib>Faez, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alirezaee, S.</au><au>Ahmadi, M.</au><au>Aghaeinia, H.</au><au>Faez, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A weighted Pseudo-Zernike feature extractor for face recognition</atitle><btitle>2005 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2005</date><risdate>2005</risdate><volume>3</volume><spage>2128</spage><epage>2132 Vol. 3</epage><pages>2128-2132 Vol. 3</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9780780392984</isbn><isbn>0780392981</isbn><abstract>Pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. In this paper, a weighted Pseudo-Zernike feature is introduced for face recognition. We define a weight function based on the face local entropy. By this weight function, the role of high information region, i.e. eyes, noses and lips, will be intensified on the extracted features. For classification, a single hidden layer feedforward neural network has been trained. To evaluate the performance of the proposed technique, experimental studies are carried out on the ORL database images of Cambridge University. The numerical results show 98.5% recognition rate on the ORL database with the order 8 of weighted Pseudo-Zernike feature and 44, 98, 40 neurons for the input, hidden, and output layers while this amount is 96% for the original Pseudo-Zernike.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2005.1571463</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.3, p.2128-2132 Vol. 3
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1571463
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Entropy
Eyes
Face recognition
Feature extraction
Image databases
Lips
Nose
Polynomials
Pseudo-Zernike moment
Spatial databases
title A weighted Pseudo-Zernike feature extractor for face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20weighted%20Pseudo-Zernike%20feature%20extractor%20for%20face%20recognition&rft.btitle=2005%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Alirezaee,%20S.&rft.date=2005&rft.volume=3&rft.spage=2128&rft.epage=2132%20Vol.%203&rft.pages=2128-2132%20Vol.%203&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9780780392984&rft.isbn_list=0780392981&rft_id=info:doi/10.1109/ICSMC.2005.1571463&rft_dat=%3Cieee_6IE%3E1571463%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1571463&rfr_iscdi=true