Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods
As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 Vol. 1 |
---|---|
container_issue | |
container_start_page | 375 |
container_title | |
container_volume | 1 |
creator | Santoro, D.M. Hruschska, E.R. do Carmo Nicoletti, M. |
description | As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set. |
doi_str_mv | 10.1109/ICSMC.2005.1571175 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1571175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1571175</ieee_id><sourcerecordid>1571175</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6335eff6775aafe854f809446ebaaf7ef2fa8ef2bb569370bc43c243d79610113</originalsourceid><addsrcrecordid>eNotUNtKxDAUDF7Add0f0Jf8QGvuaR6leFlY8WEVfJElbU92I20jSfrg39vFhWGGmQOHYRC6paSklJj7db19rUtGiCyp1JRqeYYWTGpdUCXlOVoZXZEZ3DBTiQu0oESxwjD2eYWuU_omhBFBqwX62kIPbfbjHjuweYqA09QkyAm7ELEfu6k9HtvepuSdh5jwlI6JxW0YBp8zAA4OHyBDDHsYIUwJD5APoUs36NLZPsHqpEv08fT4Xr8Um7fndf2wKfzcPBeKcwnOKa2ltQ4qKVxFjBAKmtlrcMzZauamkcpwTZpW8JYJ3mmjKKGUL9Hd_18PALuf6Acbf3enZfgf52hXyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</creator><creatorcontrib>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</creatorcontrib><description>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9780780392984</identifier><identifier>ISBN: 0780392981</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2005.1571175</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; DistAl ; feature subset selection ; filter ; Filters ; Gain measurement ; Genetic algorithms ; Learning systems ; Machine learning ; Machine learning algorithms ; Nearest neighbor searches ; Neural networks ; Time measurement ; wrapper</subject><ispartof>2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.1, p.375-380 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1571175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1571175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santoro, D.M.</creatorcontrib><creatorcontrib>Hruschska, E.R.</creatorcontrib><creatorcontrib>do Carmo Nicoletti, M.</creatorcontrib><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><title>2005 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</description><subject>Data mining</subject><subject>DistAl</subject><subject>feature subset selection</subject><subject>filter</subject><subject>Filters</subject><subject>Gain measurement</subject><subject>Genetic algorithms</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Nearest neighbor searches</subject><subject>Neural networks</subject><subject>Time measurement</subject><subject>wrapper</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9780780392984</isbn><isbn>0780392981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKxDAUDF7Add0f0Jf8QGvuaR6leFlY8WEVfJElbU92I20jSfrg39vFhWGGmQOHYRC6paSklJj7db19rUtGiCyp1JRqeYYWTGpdUCXlOVoZXZEZ3DBTiQu0oESxwjD2eYWuU_omhBFBqwX62kIPbfbjHjuweYqA09QkyAm7ELEfu6k9HtvepuSdh5jwlI6JxW0YBp8zAA4OHyBDDHsYIUwJD5APoUs36NLZPsHqpEv08fT4Xr8Um7fndf2wKfzcPBeKcwnOKa2ltQ4qKVxFjBAKmtlrcMzZauamkcpwTZpW8JYJ3mmjKKGUL9Hd_18PALuf6Acbf3enZfgf52hXyg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Santoro, D.M.</creator><creator>Hruschska, E.R.</creator><creator>do Carmo Nicoletti, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><author>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6335eff6775aafe854f809446ebaaf7ef2fa8ef2bb569370bc43c243d79610113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data mining</topic><topic>DistAl</topic><topic>feature subset selection</topic><topic>filter</topic><topic>Filters</topic><topic>Gain measurement</topic><topic>Genetic algorithms</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Nearest neighbor searches</topic><topic>Neural networks</topic><topic>Time measurement</topic><topic>wrapper</topic><toplevel>online_resources</toplevel><creatorcontrib>Santoro, D.M.</creatorcontrib><creatorcontrib>Hruschska, E.R.</creatorcontrib><creatorcontrib>do Carmo Nicoletti, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santoro, D.M.</au><au>Hruschska, E.R.</au><au>do Carmo Nicoletti, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</atitle><btitle>2005 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>375</spage><epage>380 Vol. 1</epage><pages>375-380 Vol. 1</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9780780392984</isbn><isbn>0780392981</isbn><abstract>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2005.1571175</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.1, p.375-380 Vol. 1 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_1571175 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining DistAl feature subset selection filter Filters Gain measurement Genetic algorithms Learning systems Machine learning Machine learning algorithms Nearest neighbor searches Neural networks Time measurement wrapper |
title | Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selecting%20feature%20subsets%20for%20inducing%20classifiers%20using%20a%20committee%20of%20heterogeneous%20methods&rft.btitle=2005%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Santoro,%20D.M.&rft.date=2005&rft.volume=1&rft.spage=375&rft.epage=380%20Vol.%201&rft.pages=375-380%20Vol.%201&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9780780392984&rft.isbn_list=0780392981&rft_id=info:doi/10.1109/ICSMC.2005.1571175&rft_dat=%3Cieee_6IE%3E1571175%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1571175&rfr_iscdi=true |