Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods

As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santoro, D.M., Hruschska, E.R., do Carmo Nicoletti, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380 Vol. 1
container_issue
container_start_page 375
container_title
container_volume 1
creator Santoro, D.M.
Hruschska, E.R.
do Carmo Nicoletti, M.
description As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.
doi_str_mv 10.1109/ICSMC.2005.1571175
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1571175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1571175</ieee_id><sourcerecordid>1571175</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6335eff6775aafe854f809446ebaaf7ef2fa8ef2bb569370bc43c243d79610113</originalsourceid><addsrcrecordid>eNotUNtKxDAUDF7Add0f0Jf8QGvuaR6leFlY8WEVfJElbU92I20jSfrg39vFhWGGmQOHYRC6paSklJj7db19rUtGiCyp1JRqeYYWTGpdUCXlOVoZXZEZ3DBTiQu0oESxwjD2eYWuU_omhBFBqwX62kIPbfbjHjuweYqA09QkyAm7ELEfu6k9HtvepuSdh5jwlI6JxW0YBp8zAA4OHyBDDHsYIUwJD5APoUs36NLZPsHqpEv08fT4Xr8Um7fndf2wKfzcPBeKcwnOKa2ltQ4qKVxFjBAKmtlrcMzZauamkcpwTZpW8JYJ3mmjKKGUL9Hd_18PALuf6Acbf3enZfgf52hXyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</creator><creatorcontrib>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</creatorcontrib><description>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9780780392984</identifier><identifier>ISBN: 0780392981</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2005.1571175</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; DistAl ; feature subset selection ; filter ; Filters ; Gain measurement ; Genetic algorithms ; Learning systems ; Machine learning ; Machine learning algorithms ; Nearest neighbor searches ; Neural networks ; Time measurement ; wrapper</subject><ispartof>2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.1, p.375-380 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1571175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1571175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santoro, D.M.</creatorcontrib><creatorcontrib>Hruschska, E.R.</creatorcontrib><creatorcontrib>do Carmo Nicoletti, M.</creatorcontrib><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><title>2005 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</description><subject>Data mining</subject><subject>DistAl</subject><subject>feature subset selection</subject><subject>filter</subject><subject>Filters</subject><subject>Gain measurement</subject><subject>Genetic algorithms</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Nearest neighbor searches</subject><subject>Neural networks</subject><subject>Time measurement</subject><subject>wrapper</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9780780392984</isbn><isbn>0780392981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKxDAUDF7Add0f0Jf8QGvuaR6leFlY8WEVfJElbU92I20jSfrg39vFhWGGmQOHYRC6paSklJj7db19rUtGiCyp1JRqeYYWTGpdUCXlOVoZXZEZ3DBTiQu0oESxwjD2eYWuU_omhBFBqwX62kIPbfbjHjuweYqA09QkyAm7ELEfu6k9HtvepuSdh5jwlI6JxW0YBp8zAA4OHyBDDHsYIUwJD5APoUs36NLZPsHqpEv08fT4Xr8Um7fndf2wKfzcPBeKcwnOKa2ltQ4qKVxFjBAKmtlrcMzZauamkcpwTZpW8JYJ3mmjKKGUL9Hd_18PALuf6Acbf3enZfgf52hXyg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Santoro, D.M.</creator><creator>Hruschska, E.R.</creator><creator>do Carmo Nicoletti, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</title><author>Santoro, D.M. ; Hruschska, E.R. ; do Carmo Nicoletti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6335eff6775aafe854f809446ebaaf7ef2fa8ef2bb569370bc43c243d79610113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data mining</topic><topic>DistAl</topic><topic>feature subset selection</topic><topic>filter</topic><topic>Filters</topic><topic>Gain measurement</topic><topic>Genetic algorithms</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Nearest neighbor searches</topic><topic>Neural networks</topic><topic>Time measurement</topic><topic>wrapper</topic><toplevel>online_resources</toplevel><creatorcontrib>Santoro, D.M.</creatorcontrib><creatorcontrib>Hruschska, E.R.</creatorcontrib><creatorcontrib>do Carmo Nicoletti, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santoro, D.M.</au><au>Hruschska, E.R.</au><au>do Carmo Nicoletti, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods</atitle><btitle>2005 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>375</spage><epage>380 Vol. 1</epage><pages>375-380 Vol. 1</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9780780392984</isbn><isbn>0780392981</isbn><abstract>As a previous step to machine learning (ML) induced classifiers, attribute subset selection methods have become an efficient alternative for reducing the dimensionality of the search space, with obvious benefits to the learning techniques used. This paper investigates the problem of feature subset selection using a committee of filter, wrapper and embedded methods. The wrappers were implemented using two different search mechanisms, a genetic algorithm and a best-first procedure as well as three different machine learning paradigms: instance-based (nearest neighbor - NN), neural network (DistAl) and symbolic (C4.5). The two filter methods used are based on consistency and correlation measures. The goals of the experiments were to be able to identify the most suitable attribute subsets to be further used for inducing a classifier as well as investigate if the combination of different results given by the committee's members can outperform any machine learning method using the original training set.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2005.1571175</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol.1, p.375-380 Vol. 1
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1571175
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
DistAl
feature subset selection
filter
Filters
Gain measurement
Genetic algorithms
Learning systems
Machine learning
Machine learning algorithms
Nearest neighbor searches
Neural networks
Time measurement
wrapper
title Selecting feature subsets for inducing classifiers using a committee of heterogeneous methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selecting%20feature%20subsets%20for%20inducing%20classifiers%20using%20a%20committee%20of%20heterogeneous%20methods&rft.btitle=2005%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Santoro,%20D.M.&rft.date=2005&rft.volume=1&rft.spage=375&rft.epage=380%20Vol.%201&rft.pages=375-380%20Vol.%201&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9780780392984&rft.isbn_list=0780392981&rft_id=info:doi/10.1109/ICSMC.2005.1571175&rft_dat=%3Cieee_6IE%3E1571175%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1571175&rfr_iscdi=true