Reconfigurable acceleration for Monte Carlo based financial simulation
This paper describes a novel hardware accelerator for Monte Carlo (MC) simulation, and illustrates its implementation in field programmable gate array (FPGA) technology for speeding up financial applications. Our accelerator is based on a generic architecture, which combines speed and flexibility by...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a novel hardware accelerator for Monte Carlo (MC) simulation, and illustrates its implementation in field programmable gate array (FPGA) technology for speeding up financial applications. Our accelerator is based on a generic architecture, which combines speed and flexibility by integrating a pipelined MC core with an on-chip instruction processor. We develop a generic number system representation for determining the choice of number representation that meets numerical precision requirements. Our approach is then used in a complex financial engineering application, involving the Brace, Gatarek and Musiela (BGM) interest rate model for pricing derivatives. We address, in our BGM model, several challenges including the generation of Gaussian distributed random numbers and pipelining of the MC simulation. Our BGM application, based on an off-the-shelf system with a Xilinx XC2VP30 device at 50 MHz, is over 25 times faster than software running on a 1.5 GHz, Intel Pentium machine |
---|---|
DOI: | 10.1109/FPT.2005.1568549 |