Speckle filtering of SAR images based on sub-aperture technique and principal component analysis

In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jicong Zhang, Jia Xu, Yingning Peng, Xiutan Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1222
container_issue
container_start_page 1217
container_title
container_volume 2
creator Jicong Zhang
Jia Xu
Yingning Peng
Xiutan Wang
description In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed into two orthogonal subspaces: the signal subspace and the noise subspace. By projecting the variant part of the vector of the current pixel onto the signal subspace, the intrinsic structural features of the scene can be well obtained. Then, the RCS can be estimated. Experimental results show that our method compares favorably to several other de-speckling methods. It preserves details such as edges and small objects much better while its speckle inhibiting degree is not any worse. The effectiveness of this approach is demonstrated by using 1 m /spl times/ 1 m X-band airborne SAR data.
doi_str_mv 10.1109/ISCIT.2005.1567088
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1567088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1567088</ieee_id><sourcerecordid>1567088</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4d1e5bd42f1e7ebf783f94a68634a5c0d5d45ae9d5da1e9ca5cdf7d55c0d194c3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxQMiKLNfQF_yBVqTpWmSx1H8MxgIdj7PNLmZ0TatTfuwb29ku1z4wbmcy-EgdE9JQSlRj9um3u6LNSG8oLwSRMorlCkhSVqmOJP0BmUxfpM0TDFR0Vv02YxgfjrAznczTD4c8eBws3nHvtdHiLjVESweAo5Lm-sRpnmZAM9gvoL_XQDrYPGYfMaPusNm6MchQJiTrrtT9PEOXTvdRcguXKGP56d9_Zrv3l629WaXeyr4nJeWAm9tuXYUBLROSOZUqStZsVJzQyy3JdegEjUFZZJmnbD8_0RVadgKPZz_egA4pES9nk6HSw_sD6CnVcs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speckle filtering of SAR images based on sub-aperture technique and principal component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jicong Zhang ; Jia Xu ; Yingning Peng ; Xiutan Wang</creator><creatorcontrib>Jicong Zhang ; Jia Xu ; Yingning Peng ; Xiutan Wang</creatorcontrib><description>In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed into two orthogonal subspaces: the signal subspace and the noise subspace. By projecting the variant part of the vector of the current pixel onto the signal subspace, the intrinsic structural features of the scene can be well obtained. Then, the RCS can be estimated. Experimental results show that our method compares favorably to several other de-speckling methods. It preserves details such as edges and small objects much better while its speckle inhibiting degree is not any worse. The effectiveness of this approach is demonstrated by using 1 m /spl times/ 1 m X-band airborne SAR data.</description><identifier>ISBN: 9780780395381</identifier><identifier>ISBN: 0780395387</identifier><identifier>DOI: 10.1109/ISCIT.2005.1567088</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Filtering ; Image reconstruction ; Layout ; Principal component analysis ; Radar cross section ; Radar imaging ; Speckle ; Statistics ; Synthetic aperture radar</subject><ispartof>IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005, 2005, Vol.2, p.1217-1222</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1567088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1567088$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jicong Zhang</creatorcontrib><creatorcontrib>Jia Xu</creatorcontrib><creatorcontrib>Yingning Peng</creatorcontrib><creatorcontrib>Xiutan Wang</creatorcontrib><title>Speckle filtering of SAR images based on sub-aperture technique and principal component analysis</title><title>IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005</title><addtitle>ISCIT</addtitle><description>In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed into two orthogonal subspaces: the signal subspace and the noise subspace. By projecting the variant part of the vector of the current pixel onto the signal subspace, the intrinsic structural features of the scene can be well obtained. Then, the RCS can be estimated. Experimental results show that our method compares favorably to several other de-speckling methods. It preserves details such as edges and small objects much better while its speckle inhibiting degree is not any worse. The effectiveness of this approach is demonstrated by using 1 m /spl times/ 1 m X-band airborne SAR data.</description><subject>Covariance matrix</subject><subject>Filtering</subject><subject>Image reconstruction</subject><subject>Layout</subject><subject>Principal component analysis</subject><subject>Radar cross section</subject><subject>Radar imaging</subject><subject>Speckle</subject><subject>Statistics</subject><subject>Synthetic aperture radar</subject><isbn>9780780395381</isbn><isbn>0780395387</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF9LwzAUxQMiKLNfQF_yBVqTpWmSx1H8MxgIdj7PNLmZ0TatTfuwb29ku1z4wbmcy-EgdE9JQSlRj9um3u6LNSG8oLwSRMorlCkhSVqmOJP0BmUxfpM0TDFR0Vv02YxgfjrAznczTD4c8eBws3nHvtdHiLjVESweAo5Lm-sRpnmZAM9gvoL_XQDrYPGYfMaPusNm6MchQJiTrrtT9PEOXTvdRcguXKGP56d9_Zrv3l629WaXeyr4nJeWAm9tuXYUBLROSOZUqStZsVJzQyy3JdegEjUFZZJmnbD8_0RVadgKPZz_egA4pES9nk6HSw_sD6CnVcs</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jicong Zhang</creator><creator>Jia Xu</creator><creator>Yingning Peng</creator><creator>Xiutan Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Speckle filtering of SAR images based on sub-aperture technique and principal component analysis</title><author>Jicong Zhang ; Jia Xu ; Yingning Peng ; Xiutan Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4d1e5bd42f1e7ebf783f94a68634a5c0d5d45ae9d5da1e9ca5cdf7d55c0d194c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Covariance matrix</topic><topic>Filtering</topic><topic>Image reconstruction</topic><topic>Layout</topic><topic>Principal component analysis</topic><topic>Radar cross section</topic><topic>Radar imaging</topic><topic>Speckle</topic><topic>Statistics</topic><topic>Synthetic aperture radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Jicong Zhang</creatorcontrib><creatorcontrib>Jia Xu</creatorcontrib><creatorcontrib>Yingning Peng</creatorcontrib><creatorcontrib>Xiutan Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jicong Zhang</au><au>Jia Xu</au><au>Yingning Peng</au><au>Xiutan Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speckle filtering of SAR images based on sub-aperture technique and principal component analysis</atitle><btitle>IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005</btitle><stitle>ISCIT</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>1217</spage><epage>1222</epage><pages>1217-1222</pages><isbn>9780780395381</isbn><isbn>0780395387</isbn><abstract>In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed into two orthogonal subspaces: the signal subspace and the noise subspace. By projecting the variant part of the vector of the current pixel onto the signal subspace, the intrinsic structural features of the scene can be well obtained. Then, the RCS can be estimated. Experimental results show that our method compares favorably to several other de-speckling methods. It preserves details such as edges and small objects much better while its speckle inhibiting degree is not any worse. The effectiveness of this approach is demonstrated by using 1 m /spl times/ 1 m X-band airborne SAR data.</abstract><pub>IEEE</pub><doi>10.1109/ISCIT.2005.1567088</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780395381
ispartof IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005, 2005, Vol.2, p.1217-1222
issn
language eng
recordid cdi_ieee_primary_1567088
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrix
Filtering
Image reconstruction
Layout
Principal component analysis
Radar cross section
Radar imaging
Speckle
Statistics
Synthetic aperture radar
title Speckle filtering of SAR images based on sub-aperture technique and principal component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speckle%20filtering%20of%20SAR%20images%20based%20on%20sub-aperture%20technique%20and%20principal%20component%20analysis&rft.btitle=IEEE%20International%20Symposium%20on%20Communications%20and%20Information%20Technology,%202005.%20ISCIT%202005&rft.au=Jicong%20Zhang&rft.date=2005&rft.volume=2&rft.spage=1217&rft.epage=1222&rft.pages=1217-1222&rft.isbn=9780780395381&rft.isbn_list=0780395387&rft_id=info:doi/10.1109/ISCIT.2005.1567088&rft_dat=%3Cieee_6IE%3E1567088%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1567088&rfr_iscdi=true