Human-computer dialogue simulation using hidden Markov models

This paper presents a probabilistic method to simulate task-oriented human-computer dialogues at the intention level, that may be used to improve or to evaluate the performance of spoken dialogue systems. Our method uses a network of hidden Markov models (HMMs) to predict system and user intentions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cuayahuitl, H., Renals, S., Lemon, O., Shimodaira, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a probabilistic method to simulate task-oriented human-computer dialogues at the intention level, that may be used to improve or to evaluate the performance of spoken dialogue systems. Our method uses a network of hidden Markov models (HMMs) to predict system and user intentions, where a "language model" predicts sequences of goals and the component HMMs predict sequences of intentions. We compare standard HMMs, input HMMs and input-output HMMs in an effort to better predict sequences of intentions. In addition, we propose a dialogue similarity measure to evaluate the realism of the simulated dialogues. We performed experiments using the DARPA communicator corpora and report results with three different metrics: dialogue length, dialogue similarity and precision-recall
DOI:10.1109/ASRU.2005.1566485