Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results

Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stockinger, Kurt, Wu, Kesheng, Campbell, Scott, Lau, Stephen, Fisk, Mike, Gavrilov, Eugene, Kent, Alex, Davis, Christopher E., Olinger, Rick, Young, Rob, Prewett, Jim, Weber, Paul, Caudell, Thomas P., Bethel, E. Wes, Smith, Steve
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 72
container_title
container_volume
creator Stockinger, Kurt
Wu, Kesheng
Campbell, Scott
Lau, Stephen
Fisk, Mike
Gavrilov, Eugene
Kent, Alex
Davis, Christopher E.
Olinger, Rick
Young, Rob
Prewett, Jim
Weber, Paul
Caudell, Thomas P.
Bethel, E. Wes
Smith, Steve
description Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.
doi_str_mv 10.1109/SC.2005.47
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1560024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1560024</ieee_id><sourcerecordid>31401625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2197-b3efc6c3d7d86ed1e9206b4b4631118f971ea13972c8dc3915c08b7eb62a61693</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0hJF5dWFksISExtPjaiROPVXgUqeLVUkbLcW6EadoUOwGVX0-qsDOd4XznPg4hp8BGAExdzbIRZyweRckeOYJYxUowCfyADEL4YIyBkgri6JAsHrD5rv2Szr0pS2fpeG2qbXCBvrnmnT636Lf02rsvXNOFC62p3I9pXL2ms4zuVtDJU9aHGmcDfcHQVk04IfulqQIO_vSYvN7ezLPJcPp4d5-Np0PDQSXDXGBppRVFUqQSC0DFmcyjPJICANJSJYAGhEq4TQsrupMtS_MEc8mNBKnEMbno5258_dliaPTKBYtVZdZYt0ELiBhIHnfgWQ86RNQb71bGbzXEkjEede5l7xq70nldL4MGpndN6lmmd2_qKNG5d1h27Pn_rPgFyaRw2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31401625</pqid></control><display><type>conference_proceeding</type><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</creator><creatorcontrib>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</creatorcontrib><description>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</description><identifier>ISBN: 1595930612</identifier><identifier>ISBN: 9781595930613</identifier><identifier>DOI: 10.1109/SC.2005.47</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Data acquisition ; Data mining ; Data visualization ; Feature extraction ; General and reference -- Cross-computing tools and techniques -- Performance ; Government ; Hardware -- Communication hardware, interfaces and storage ; High performance computing ; Indexing ; Laboratories ; Networks ; Networks -- Network services -- Network monitoring ; Performance analysis ; Telecommunication traffic</subject><ispartof>ACM/IEEE SC 2005 Conference (SC'05), 2005, p.72-72</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1560024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1560024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stockinger, Kurt</creatorcontrib><creatorcontrib>Wu, Kesheng</creatorcontrib><creatorcontrib>Campbell, Scott</creatorcontrib><creatorcontrib>Lau, Stephen</creatorcontrib><creatorcontrib>Fisk, Mike</creatorcontrib><creatorcontrib>Gavrilov, Eugene</creatorcontrib><creatorcontrib>Kent, Alex</creatorcontrib><creatorcontrib>Davis, Christopher E.</creatorcontrib><creatorcontrib>Olinger, Rick</creatorcontrib><creatorcontrib>Young, Rob</creatorcontrib><creatorcontrib>Prewett, Jim</creatorcontrib><creatorcontrib>Weber, Paul</creatorcontrib><creatorcontrib>Caudell, Thomas P.</creatorcontrib><creatorcontrib>Bethel, E. Wes</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><title>ACM/IEEE SC 2005 Conference (SC'05)</title><addtitle>SUPERC</addtitle><description>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</description><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>General and reference -- Cross-computing tools and techniques -- Performance</subject><subject>Government</subject><subject>Hardware -- Communication hardware, interfaces and storage</subject><subject>High performance computing</subject><subject>Indexing</subject><subject>Laboratories</subject><subject>Networks</subject><subject>Networks -- Network services -- Network monitoring</subject><subject>Performance analysis</subject><subject>Telecommunication traffic</subject><isbn>1595930612</isbn><isbn>9781595930613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkDtPwzAUhS0hJF5dWFksISExtPjaiROPVXgUqeLVUkbLcW6EadoUOwGVX0-qsDOd4XznPg4hp8BGAExdzbIRZyweRckeOYJYxUowCfyADEL4YIyBkgri6JAsHrD5rv2Szr0pS2fpeG2qbXCBvrnmnT636Lf02rsvXNOFC62p3I9pXL2ms4zuVtDJU9aHGmcDfcHQVk04IfulqQIO_vSYvN7ezLPJcPp4d5-Np0PDQSXDXGBppRVFUqQSC0DFmcyjPJICANJSJYAGhEq4TQsrupMtS_MEc8mNBKnEMbno5258_dliaPTKBYtVZdZYt0ELiBhIHnfgWQ86RNQb71bGbzXEkjEede5l7xq70nldL4MGpndN6lmmd2_qKNG5d1h27Pn_rPgFyaRw2g</recordid><startdate>20051112</startdate><enddate>20051112</enddate><creator>Stockinger, Kurt</creator><creator>Wu, Kesheng</creator><creator>Campbell, Scott</creator><creator>Lau, Stephen</creator><creator>Fisk, Mike</creator><creator>Gavrilov, Eugene</creator><creator>Kent, Alex</creator><creator>Davis, Christopher E.</creator><creator>Olinger, Rick</creator><creator>Young, Rob</creator><creator>Prewett, Jim</creator><creator>Weber, Paul</creator><creator>Caudell, Thomas P.</creator><creator>Bethel, E. Wes</creator><creator>Smith, Steve</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051112</creationdate><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><author>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2197-b3efc6c3d7d86ed1e9206b4b4631118f971ea13972c8dc3915c08b7eb62a61693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>General and reference -- Cross-computing tools and techniques -- Performance</topic><topic>Government</topic><topic>Hardware -- Communication hardware, interfaces and storage</topic><topic>High performance computing</topic><topic>Indexing</topic><topic>Laboratories</topic><topic>Networks</topic><topic>Networks -- Network services -- Network monitoring</topic><topic>Performance analysis</topic><topic>Telecommunication traffic</topic><toplevel>online_resources</toplevel><creatorcontrib>Stockinger, Kurt</creatorcontrib><creatorcontrib>Wu, Kesheng</creatorcontrib><creatorcontrib>Campbell, Scott</creatorcontrib><creatorcontrib>Lau, Stephen</creatorcontrib><creatorcontrib>Fisk, Mike</creatorcontrib><creatorcontrib>Gavrilov, Eugene</creatorcontrib><creatorcontrib>Kent, Alex</creatorcontrib><creatorcontrib>Davis, Christopher E.</creatorcontrib><creatorcontrib>Olinger, Rick</creatorcontrib><creatorcontrib>Young, Rob</creatorcontrib><creatorcontrib>Prewett, Jim</creatorcontrib><creatorcontrib>Weber, Paul</creatorcontrib><creatorcontrib>Caudell, Thomas P.</creatorcontrib><creatorcontrib>Bethel, E. Wes</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stockinger, Kurt</au><au>Wu, Kesheng</au><au>Campbell, Scott</au><au>Lau, Stephen</au><au>Fisk, Mike</au><au>Gavrilov, Eugene</au><au>Kent, Alex</au><au>Davis, Christopher E.</au><au>Olinger, Rick</au><au>Young, Rob</au><au>Prewett, Jim</au><au>Weber, Paul</au><au>Caudell, Thomas P.</au><au>Bethel, E. Wes</au><au>Smith, Steve</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</atitle><btitle>ACM/IEEE SC 2005 Conference (SC'05)</btitle><stitle>SUPERC</stitle><date>2005-11-12</date><risdate>2005</risdate><spage>72</spage><epage>72</epage><pages>72-72</pages><isbn>1595930612</isbn><isbn>9781595930613</isbn><abstract>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/SC.2005.47</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1595930612
ispartof ACM/IEEE SC 2005 Conference (SC'05), 2005, p.72-72
issn
language eng
recordid cdi_ieee_primary_1560024
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data acquisition
Data mining
Data visualization
Feature extraction
General and reference -- Cross-computing tools and techniques -- Performance
Government
Hardware -- Communication hardware, interfaces and storage
High performance computing
Indexing
Laboratories
Networks
Networks -- Network services -- Network monitoring
Performance analysis
Telecommunication traffic
title Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Traffic%20Analysis%20With%20Query%20Driven%20Visualization%20SC%202005%20HPC%20Analytics%20Results&rft.btitle=ACM/IEEE%20SC%202005%20Conference%20(SC'05)&rft.au=Stockinger,%20Kurt&rft.date=2005-11-12&rft.spage=72&rft.epage=72&rft.pages=72-72&rft.isbn=1595930612&rft.isbn_list=9781595930613&rft_id=info:doi/10.1109/SC.2005.47&rft_dat=%3Cproquest_6IE%3E31401625%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31401625&rft_id=info:pmid/&rft_ieee_id=1560024&rfr_iscdi=true