Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results
Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | |
container_volume | |
creator | Stockinger, Kurt Wu, Kesheng Campbell, Scott Lau, Stephen Fisk, Mike Gavrilov, Eugene Kent, Alex Davis, Christopher E. Olinger, Rick Young, Rob Prewett, Jim Weber, Paul Caudell, Thomas P. Bethel, E. Wes Smith, Steve |
description | Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations. |
doi_str_mv | 10.1109/SC.2005.47 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1560024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1560024</ieee_id><sourcerecordid>31401625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2197-b3efc6c3d7d86ed1e9206b4b4631118f971ea13972c8dc3915c08b7eb62a61693</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0hJF5dWFksISExtPjaiROPVXgUqeLVUkbLcW6EadoUOwGVX0-qsDOd4XznPg4hp8BGAExdzbIRZyweRckeOYJYxUowCfyADEL4YIyBkgri6JAsHrD5rv2Szr0pS2fpeG2qbXCBvrnmnT636Lf02rsvXNOFC62p3I9pXL2ms4zuVtDJU9aHGmcDfcHQVk04IfulqQIO_vSYvN7ezLPJcPp4d5-Np0PDQSXDXGBppRVFUqQSC0DFmcyjPJICANJSJYAGhEq4TQsrupMtS_MEc8mNBKnEMbno5258_dliaPTKBYtVZdZYt0ELiBhIHnfgWQ86RNQb71bGbzXEkjEede5l7xq70nldL4MGpndN6lmmd2_qKNG5d1h27Pn_rPgFyaRw2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31401625</pqid></control><display><type>conference_proceeding</type><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</creator><creatorcontrib>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</creatorcontrib><description>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</description><identifier>ISBN: 1595930612</identifier><identifier>ISBN: 9781595930613</identifier><identifier>DOI: 10.1109/SC.2005.47</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Data acquisition ; Data mining ; Data visualization ; Feature extraction ; General and reference -- Cross-computing tools and techniques -- Performance ; Government ; Hardware -- Communication hardware, interfaces and storage ; High performance computing ; Indexing ; Laboratories ; Networks ; Networks -- Network services -- Network monitoring ; Performance analysis ; Telecommunication traffic</subject><ispartof>ACM/IEEE SC 2005 Conference (SC'05), 2005, p.72-72</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1560024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1560024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stockinger, Kurt</creatorcontrib><creatorcontrib>Wu, Kesheng</creatorcontrib><creatorcontrib>Campbell, Scott</creatorcontrib><creatorcontrib>Lau, Stephen</creatorcontrib><creatorcontrib>Fisk, Mike</creatorcontrib><creatorcontrib>Gavrilov, Eugene</creatorcontrib><creatorcontrib>Kent, Alex</creatorcontrib><creatorcontrib>Davis, Christopher E.</creatorcontrib><creatorcontrib>Olinger, Rick</creatorcontrib><creatorcontrib>Young, Rob</creatorcontrib><creatorcontrib>Prewett, Jim</creatorcontrib><creatorcontrib>Weber, Paul</creatorcontrib><creatorcontrib>Caudell, Thomas P.</creatorcontrib><creatorcontrib>Bethel, E. Wes</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><title>ACM/IEEE SC 2005 Conference (SC'05)</title><addtitle>SUPERC</addtitle><description>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</description><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>General and reference -- Cross-computing tools and techniques -- Performance</subject><subject>Government</subject><subject>Hardware -- Communication hardware, interfaces and storage</subject><subject>High performance computing</subject><subject>Indexing</subject><subject>Laboratories</subject><subject>Networks</subject><subject>Networks -- Network services -- Network monitoring</subject><subject>Performance analysis</subject><subject>Telecommunication traffic</subject><isbn>1595930612</isbn><isbn>9781595930613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkDtPwzAUhS0hJF5dWFksISExtPjaiROPVXgUqeLVUkbLcW6EadoUOwGVX0-qsDOd4XznPg4hp8BGAExdzbIRZyweRckeOYJYxUowCfyADEL4YIyBkgri6JAsHrD5rv2Szr0pS2fpeG2qbXCBvrnmnT636Lf02rsvXNOFC62p3I9pXL2ms4zuVtDJU9aHGmcDfcHQVk04IfulqQIO_vSYvN7ezLPJcPp4d5-Np0PDQSXDXGBppRVFUqQSC0DFmcyjPJICANJSJYAGhEq4TQsrupMtS_MEc8mNBKnEMbno5258_dliaPTKBYtVZdZYt0ELiBhIHnfgWQ86RNQb71bGbzXEkjEede5l7xq70nldL4MGpndN6lmmd2_qKNG5d1h27Pn_rPgFyaRw2g</recordid><startdate>20051112</startdate><enddate>20051112</enddate><creator>Stockinger, Kurt</creator><creator>Wu, Kesheng</creator><creator>Campbell, Scott</creator><creator>Lau, Stephen</creator><creator>Fisk, Mike</creator><creator>Gavrilov, Eugene</creator><creator>Kent, Alex</creator><creator>Davis, Christopher E.</creator><creator>Olinger, Rick</creator><creator>Young, Rob</creator><creator>Prewett, Jim</creator><creator>Weber, Paul</creator><creator>Caudell, Thomas P.</creator><creator>Bethel, E. Wes</creator><creator>Smith, Steve</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051112</creationdate><title>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</title><author>Stockinger, Kurt ; Wu, Kesheng ; Campbell, Scott ; Lau, Stephen ; Fisk, Mike ; Gavrilov, Eugene ; Kent, Alex ; Davis, Christopher E. ; Olinger, Rick ; Young, Rob ; Prewett, Jim ; Weber, Paul ; Caudell, Thomas P. ; Bethel, E. Wes ; Smith, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2197-b3efc6c3d7d86ed1e9206b4b4631118f971ea13972c8dc3915c08b7eb62a61693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>General and reference -- Cross-computing tools and techniques -- Performance</topic><topic>Government</topic><topic>Hardware -- Communication hardware, interfaces and storage</topic><topic>High performance computing</topic><topic>Indexing</topic><topic>Laboratories</topic><topic>Networks</topic><topic>Networks -- Network services -- Network monitoring</topic><topic>Performance analysis</topic><topic>Telecommunication traffic</topic><toplevel>online_resources</toplevel><creatorcontrib>Stockinger, Kurt</creatorcontrib><creatorcontrib>Wu, Kesheng</creatorcontrib><creatorcontrib>Campbell, Scott</creatorcontrib><creatorcontrib>Lau, Stephen</creatorcontrib><creatorcontrib>Fisk, Mike</creatorcontrib><creatorcontrib>Gavrilov, Eugene</creatorcontrib><creatorcontrib>Kent, Alex</creatorcontrib><creatorcontrib>Davis, Christopher E.</creatorcontrib><creatorcontrib>Olinger, Rick</creatorcontrib><creatorcontrib>Young, Rob</creatorcontrib><creatorcontrib>Prewett, Jim</creatorcontrib><creatorcontrib>Weber, Paul</creatorcontrib><creatorcontrib>Caudell, Thomas P.</creatorcontrib><creatorcontrib>Bethel, E. Wes</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stockinger, Kurt</au><au>Wu, Kesheng</au><au>Campbell, Scott</au><au>Lau, Stephen</au><au>Fisk, Mike</au><au>Gavrilov, Eugene</au><au>Kent, Alex</au><au>Davis, Christopher E.</au><au>Olinger, Rick</au><au>Young, Rob</au><au>Prewett, Jim</au><au>Weber, Paul</au><au>Caudell, Thomas P.</au><au>Bethel, E. Wes</au><au>Smith, Steve</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results</atitle><btitle>ACM/IEEE SC 2005 Conference (SC'05)</btitle><stitle>SUPERC</stitle><date>2005-11-12</date><risdate>2005</risdate><spage>72</spage><epage>72</epage><pages>72-72</pages><isbn>1595930612</isbn><isbn>9781595930613</isbn><abstract>Our analytics task is to identify, characterize, and visualize anomalous subsets of as large of a collection of network connection data as possible. We use a combination of HPC resources, advanced algorithms, and visualization techniques. To effectively and efficiently identify the salient portions of the data, we rely on a multistage workflow that includes data acquisition, summarization (feature extraction), novelty detection, and classification. Once these subsets of interest have been identified and automatically characterized, we use a stateof- the-art high-dimensional query system to extract this data for interactive visualization. Our approach is equally useful for other large-data analysis problems where it is more practical to identify interesting subsets of the data for visualization than it is to render all data elements. By reducing the size of the rendering workload, we enable highly interactive and useful visualizations.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/SC.2005.47</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1595930612 |
ispartof | ACM/IEEE SC 2005 Conference (SC'05), 2005, p.72-72 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1560024 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data acquisition Data mining Data visualization Feature extraction General and reference -- Cross-computing tools and techniques -- Performance Government Hardware -- Communication hardware, interfaces and storage High performance computing Indexing Laboratories Networks Networks -- Network services -- Network monitoring Performance analysis Telecommunication traffic |
title | Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Traffic%20Analysis%20With%20Query%20Driven%20Visualization%20SC%202005%20HPC%20Analytics%20Results&rft.btitle=ACM/IEEE%20SC%202005%20Conference%20(SC'05)&rft.au=Stockinger,%20Kurt&rft.date=2005-11-12&rft.spage=72&rft.epage=72&rft.pages=72-72&rft.isbn=1595930612&rft.isbn_list=9781595930613&rft_id=info:doi/10.1109/SC.2005.47&rft_dat=%3Cproquest_6IE%3E31401625%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31401625&rft_id=info:pmid/&rft_ieee_id=1560024&rfr_iscdi=true |