Efficient FPGA implementation of FFT based multipliers
Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1303 |
---|---|
container_issue | |
container_start_page | 1300 |
container_title | |
container_volume | |
creator | Lo Sing Cheng Miri, A. Tet Hin Yeap |
description | Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware |
doi_str_mv | 10.1109/CCECE.2005.1557215 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1557215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1557215</ieee_id><sourcerecordid>1557215</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dce05bf3735402822f554b57cf88e4b3e2670545afc1820e06c4d7b5d64bf4cf3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAetYFr9Ad3MDyTeedyZybKEpAoFu8i-ZCZ3YCRpQxIX_r2CXR3O5sBh7EVAIQSUb1VVV3UhAbAQiFYKvGOZRGtyC9rcsy1YB8o5h3LDMnAacmtd-ci2y_IFANoZnTFTx5hCosvKm9Nhz9M4DTT-abem64VfI2-alvtuoZ6P38OapiHRvDyxh9gNCz3fuGNtU7fVe378PHxU-2OeSljzPhCgj8oq1CCdlBFRe7QhOkfaK5LGAmrsYhBOAoEJurcee6N91CGqHXv9zyYiOk9zGrv553zbVb9dyEZf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient FPGA implementation of FFT based multipliers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</creator><creatorcontrib>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</creatorcontrib><description>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</description><identifier>ISSN: 0840-7789</identifier><identifier>ISBN: 0780388852</identifier><identifier>ISBN: 9780780388857</identifier><identifier>EISSN: 2576-7046</identifier><identifier>DOI: 10.1109/CCECE.2005.1557215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Arithmetic ; Codes ; Cryptography ; Discrete Fourier transforms ; Field programmable gate arrays ; Galois fields ; Hardware ; Polynomials ; Signal processing</subject><ispartof>Canadian Conference on Electrical and Computer Engineering, 2005, 2005, p.1300-1303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1557215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1557215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lo Sing Cheng</creatorcontrib><creatorcontrib>Miri, A.</creatorcontrib><creatorcontrib>Tet Hin Yeap</creatorcontrib><title>Efficient FPGA implementation of FFT based multipliers</title><title>Canadian Conference on Electrical and Computer Engineering, 2005</title><addtitle>CCECE</addtitle><description>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</description><subject>Application software</subject><subject>Arithmetic</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Discrete Fourier transforms</subject><subject>Field programmable gate arrays</subject><subject>Galois fields</subject><subject>Hardware</subject><subject>Polynomials</subject><subject>Signal processing</subject><issn>0840-7789</issn><issn>2576-7046</issn><isbn>0780388852</isbn><isbn>9780780388857</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKw0AUQAetYFr9Ad3MDyTeedyZybKEpAoFu8i-ZCZ3YCRpQxIX_r2CXR3O5sBh7EVAIQSUb1VVV3UhAbAQiFYKvGOZRGtyC9rcsy1YB8o5h3LDMnAacmtd-ci2y_IFANoZnTFTx5hCosvKm9Nhz9M4DTT-abem64VfI2-alvtuoZ6P38OapiHRvDyxh9gNCz3fuGNtU7fVe378PHxU-2OeSljzPhCgj8oq1CCdlBFRe7QhOkfaK5LGAmrsYhBOAoEJurcee6N91CGqHXv9zyYiOk9zGrv553zbVb9dyEZf</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lo Sing Cheng</creator><creator>Miri, A.</creator><creator>Tet Hin Yeap</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Efficient FPGA implementation of FFT based multipliers</title><author>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dce05bf3735402822f554b57cf88e4b3e2670545afc1820e06c4d7b5d64bf4cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Application software</topic><topic>Arithmetic</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Discrete Fourier transforms</topic><topic>Field programmable gate arrays</topic><topic>Galois fields</topic><topic>Hardware</topic><topic>Polynomials</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Lo Sing Cheng</creatorcontrib><creatorcontrib>Miri, A.</creatorcontrib><creatorcontrib>Tet Hin Yeap</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lo Sing Cheng</au><au>Miri, A.</au><au>Tet Hin Yeap</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient FPGA implementation of FFT based multipliers</atitle><btitle>Canadian Conference on Electrical and Computer Engineering, 2005</btitle><stitle>CCECE</stitle><date>2005</date><risdate>2005</risdate><spage>1300</spage><epage>1303</epage><pages>1300-1303</pages><issn>0840-7789</issn><eissn>2576-7046</eissn><isbn>0780388852</isbn><isbn>9780780388857</isbn><abstract>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</abstract><pub>IEEE</pub><doi>10.1109/CCECE.2005.1557215</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0840-7789 |
ispartof | Canadian Conference on Electrical and Computer Engineering, 2005, 2005, p.1300-1303 |
issn | 0840-7789 2576-7046 |
language | eng |
recordid | cdi_ieee_primary_1557215 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Arithmetic Codes Cryptography Discrete Fourier transforms Field programmable gate arrays Galois fields Hardware Polynomials Signal processing |
title | Efficient FPGA implementation of FFT based multipliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20FPGA%20implementation%20of%20FFT%20based%20multipliers&rft.btitle=Canadian%20Conference%20on%20Electrical%20and%20Computer%20Engineering,%202005&rft.au=Lo%20Sing%20Cheng&rft.date=2005&rft.spage=1300&rft.epage=1303&rft.pages=1300-1303&rft.issn=0840-7789&rft.eissn=2576-7046&rft.isbn=0780388852&rft.isbn_list=9780780388857&rft_id=info:doi/10.1109/CCECE.2005.1557215&rft_dat=%3Cieee_6IE%3E1557215%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1557215&rfr_iscdi=true |