Efficient FPGA implementation of FFT based multipliers

Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lo Sing Cheng, Miri, A., Tet Hin Yeap
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue
container_start_page 1300
container_title
container_volume
creator Lo Sing Cheng
Miri, A.
Tet Hin Yeap
description Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware
doi_str_mv 10.1109/CCECE.2005.1557215
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1557215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1557215</ieee_id><sourcerecordid>1557215</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dce05bf3735402822f554b57cf88e4b3e2670545afc1820e06c4d7b5d64bf4cf3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAetYFr9Ad3MDyTeedyZybKEpAoFu8i-ZCZ3YCRpQxIX_r2CXR3O5sBh7EVAIQSUb1VVV3UhAbAQiFYKvGOZRGtyC9rcsy1YB8o5h3LDMnAacmtd-ci2y_IFANoZnTFTx5hCosvKm9Nhz9M4DTT-abem64VfI2-alvtuoZ6P38OapiHRvDyxh9gNCz3fuGNtU7fVe378PHxU-2OeSljzPhCgj8oq1CCdlBFRe7QhOkfaK5LGAmrsYhBOAoEJurcee6N91CGqHXv9zyYiOk9zGrv553zbVb9dyEZf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient FPGA implementation of FFT based multipliers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</creator><creatorcontrib>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</creatorcontrib><description>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</description><identifier>ISSN: 0840-7789</identifier><identifier>ISBN: 0780388852</identifier><identifier>ISBN: 9780780388857</identifier><identifier>EISSN: 2576-7046</identifier><identifier>DOI: 10.1109/CCECE.2005.1557215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Arithmetic ; Codes ; Cryptography ; Discrete Fourier transforms ; Field programmable gate arrays ; Galois fields ; Hardware ; Polynomials ; Signal processing</subject><ispartof>Canadian Conference on Electrical and Computer Engineering, 2005, 2005, p.1300-1303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1557215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1557215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lo Sing Cheng</creatorcontrib><creatorcontrib>Miri, A.</creatorcontrib><creatorcontrib>Tet Hin Yeap</creatorcontrib><title>Efficient FPGA implementation of FFT based multipliers</title><title>Canadian Conference on Electrical and Computer Engineering, 2005</title><addtitle>CCECE</addtitle><description>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</description><subject>Application software</subject><subject>Arithmetic</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Discrete Fourier transforms</subject><subject>Field programmable gate arrays</subject><subject>Galois fields</subject><subject>Hardware</subject><subject>Polynomials</subject><subject>Signal processing</subject><issn>0840-7789</issn><issn>2576-7046</issn><isbn>0780388852</isbn><isbn>9780780388857</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKw0AUQAetYFr9Ad3MDyTeedyZybKEpAoFu8i-ZCZ3YCRpQxIX_r2CXR3O5sBh7EVAIQSUb1VVV3UhAbAQiFYKvGOZRGtyC9rcsy1YB8o5h3LDMnAacmtd-ci2y_IFANoZnTFTx5hCosvKm9Nhz9M4DTT-abem64VfI2-alvtuoZ6P38OapiHRvDyxh9gNCz3fuGNtU7fVe378PHxU-2OeSljzPhCgj8oq1CCdlBFRe7QhOkfaK5LGAmrsYhBOAoEJurcee6N91CGqHXv9zyYiOk9zGrv553zbVb9dyEZf</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lo Sing Cheng</creator><creator>Miri, A.</creator><creator>Tet Hin Yeap</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Efficient FPGA implementation of FFT based multipliers</title><author>Lo Sing Cheng ; Miri, A. ; Tet Hin Yeap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dce05bf3735402822f554b57cf88e4b3e2670545afc1820e06c4d7b5d64bf4cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Application software</topic><topic>Arithmetic</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Discrete Fourier transforms</topic><topic>Field programmable gate arrays</topic><topic>Galois fields</topic><topic>Hardware</topic><topic>Polynomials</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Lo Sing Cheng</creatorcontrib><creatorcontrib>Miri, A.</creatorcontrib><creatorcontrib>Tet Hin Yeap</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lo Sing Cheng</au><au>Miri, A.</au><au>Tet Hin Yeap</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient FPGA implementation of FFT based multipliers</atitle><btitle>Canadian Conference on Electrical and Computer Engineering, 2005</btitle><stitle>CCECE</stitle><date>2005</date><risdate>2005</risdate><spage>1300</spage><epage>1303</epage><pages>1300-1303</pages><issn>0840-7789</issn><eissn>2576-7046</eissn><isbn>0780388852</isbn><isbn>9780780388857</isbn><abstract>Finite field multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal processing, coding theory and cryptography. However, it is also one of the most time consuming operations in both software and hardware, which makes it pertinent to develop a fast and efficient implementation. In this paper, we propose a novel FFT based finite field multiplier to address this problem. The fast Fourier transform (FFT) is the collection of computationally efficient algorithms that perform the discrete Fourier transform (DFT). For our purposes, we will use its efficient computation for polynomial multiplication. The FFT performs polynomial multiplication in O(nlog(n)) time compared to the classical method time of O(n 2 ). The idea of using the FFT for finite field multiplication has been researched extensively, but to our knowledge, this is the first implementation in hardware</abstract><pub>IEEE</pub><doi>10.1109/CCECE.2005.1557215</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0840-7789
ispartof Canadian Conference on Electrical and Computer Engineering, 2005, 2005, p.1300-1303
issn 0840-7789
2576-7046
language eng
recordid cdi_ieee_primary_1557215
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Arithmetic
Codes
Cryptography
Discrete Fourier transforms
Field programmable gate arrays
Galois fields
Hardware
Polynomials
Signal processing
title Efficient FPGA implementation of FFT based multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20FPGA%20implementation%20of%20FFT%20based%20multipliers&rft.btitle=Canadian%20Conference%20on%20Electrical%20and%20Computer%20Engineering,%202005&rft.au=Lo%20Sing%20Cheng&rft.date=2005&rft.spage=1300&rft.epage=1303&rft.pages=1300-1303&rft.issn=0840-7789&rft.eissn=2576-7046&rft.isbn=0780388852&rft.isbn_list=9780780388857&rft_id=info:doi/10.1109/CCECE.2005.1557215&rft_dat=%3Cieee_6IE%3E1557215%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1557215&rfr_iscdi=true