Short term memory for bipolar temporal patterns

Summary form only given. A study of the short-term memory requirements of temporal pattern recognition prompts the creation of a new model for neural computation. It is hypothesized that neural responses resemble hysteresis loops, instead of the simple sigmoid. The upper and lower halves of the hyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tom, M.D., Tenorio, M.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 992 vol.2
container_title
container_volume ii
creator Tom, M.D.
Tenorio, M.F.
description Summary form only given. A study of the short-term memory requirements of temporal pattern recognition prompts the creation of a new model for neural computation. It is hypothesized that neural responses resemble hysteresis loops, instead of the simple sigmoid. The upper and lower halves of the hysteresis loop are described by two equations. Generalizing the two equations to two families of curves accommodates loops of various sizes. It is conjectured that this unit is capable of memorizing the entire history of its inputs.< >
doi_str_mv 10.1109/IJCNN.1991.155659
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_155659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>155659</ieee_id><sourcerecordid>155659</sourcerecordid><originalsourceid>FETCH-ieee_primary_1556593</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDSw1Pf0cvbz0zO0tDTUMzQ1NTO1ZGbgMjC3MDA2MDQzMeRg4C0uzjIAAhNTAzNTC04G_eCM_KIShZLUolyF3NTc_KJKhbT8IoWkzIL8nMQioHhuQX5RYo5CQWIJUE1eMQ8Da1piTnEqL5TmZpBycw1x9tDNTE1NjS8oysxNLKqMh1htjFcSAIIEMpc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short term memory for bipolar temporal patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tom, M.D. ; Tenorio, M.F.</creator><creatorcontrib>Tom, M.D. ; Tenorio, M.F.</creatorcontrib><description>Summary form only given. A study of the short-term memory requirements of temporal pattern recognition prompts the creation of a new model for neural computation. It is hypothesized that neural responses resemble hysteresis loops, instead of the simple sigmoid. The upper and lower halves of the hysteresis loop are described by two equations. Generalizing the two equations to two families of curves accommodates loops of various sizes. It is conjectured that this unit is capable of memorizing the entire history of its inputs.&lt; &gt;</description><identifier>ISBN: 0780301641</identifier><identifier>ISBN: 9780780301641</identifier><identifier>DOI: 10.1109/IJCNN.1991.155659</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Concurrent computing ; Distributed computing ; Equations ; History ; Hysteresis ; Laboratories ; Neurons ; Pattern recognition</subject><ispartof>IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991, Vol.ii, p.992 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/155659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/155659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tom, M.D.</creatorcontrib><creatorcontrib>Tenorio, M.F.</creatorcontrib><title>Short term memory for bipolar temporal patterns</title><title>IJCNN-91-Seattle International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>Summary form only given. A study of the short-term memory requirements of temporal pattern recognition prompts the creation of a new model for neural computation. It is hypothesized that neural responses resemble hysteresis loops, instead of the simple sigmoid. The upper and lower halves of the hysteresis loop are described by two equations. Generalizing the two equations to two families of curves accommodates loops of various sizes. It is conjectured that this unit is capable of memorizing the entire history of its inputs.&lt; &gt;</description><subject>Computational modeling</subject><subject>Concurrent computing</subject><subject>Distributed computing</subject><subject>Equations</subject><subject>History</subject><subject>Hysteresis</subject><subject>Laboratories</subject><subject>Neurons</subject><subject>Pattern recognition</subject><isbn>0780301641</isbn><isbn>9780780301641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJA0NNAzNDSw1Pf0cvbz0zO0tDTUMzQ1NTO1ZGbgMjC3MDA2MDQzMeRg4C0uzjIAAhNTAzNTC04G_eCM_KIShZLUolyF3NTc_KJKhbT8IoWkzIL8nMQioHhuQX5RYo5CQWIJUE1eMQ8Da1piTnEqL5TmZpBycw1x9tDNTE1NjS8oysxNLKqMh1htjFcSAIIEMpc</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Tom, M.D.</creator><creator>Tenorio, M.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Short term memory for bipolar temporal patterns</title><author>Tom, M.D. ; Tenorio, M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_1556593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Computational modeling</topic><topic>Concurrent computing</topic><topic>Distributed computing</topic><topic>Equations</topic><topic>History</topic><topic>Hysteresis</topic><topic>Laboratories</topic><topic>Neurons</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Tom, M.D.</creatorcontrib><creatorcontrib>Tenorio, M.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tom, M.D.</au><au>Tenorio, M.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short term memory for bipolar temporal patterns</atitle><btitle>IJCNN-91-Seattle International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>1991</date><risdate>1991</risdate><volume>ii</volume><spage>992 vol.2</spage><pages>992 vol.2-</pages><isbn>0780301641</isbn><isbn>9780780301641</isbn><abstract>Summary form only given. A study of the short-term memory requirements of temporal pattern recognition prompts the creation of a new model for neural computation. It is hypothesized that neural responses resemble hysteresis loops, instead of the simple sigmoid. The upper and lower halves of the hysteresis loop are described by two equations. Generalizing the two equations to two families of curves accommodates loops of various sizes. It is conjectured that this unit is capable of memorizing the entire history of its inputs.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1991.155659</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780301641
ispartof IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991, Vol.ii, p.992 vol.2
issn
language eng
recordid cdi_ieee_primary_155659
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Concurrent computing
Distributed computing
Equations
History
Hysteresis
Laboratories
Neurons
Pattern recognition
title Short term memory for bipolar temporal patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short%20term%20memory%20for%20bipolar%20temporal%20patterns&rft.btitle=IJCNN-91-Seattle%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Tom,%20M.D.&rft.date=1991&rft.volume=ii&rft.spage=992%20vol.2&rft.pages=992%20vol.2-&rft.isbn=0780301641&rft.isbn_list=9780780301641&rft_id=info:doi/10.1109/IJCNN.1991.155659&rft_dat=%3Cieee_6IE%3E155659%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=155659&rfr_iscdi=true