A continuous attractor neural network model of divided visual attention

The biologically realistic model of selective visual attention by Deco et al. uses a continuous attractor neural network to simulate a saliency map in posterior parietal cortex. We test the ability of the model to explain experimental evidence on the distribution of spatial attention. The majority o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Standage, D.I., Trappenberg, T.P., Klein, R.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2902 vol. 5
container_issue
container_start_page 2897
container_title
container_volume 5
creator Standage, D.I.
Trappenberg, T.P.
Klein, R.M.
description The biologically realistic model of selective visual attention by Deco et al. uses a continuous attractor neural network to simulate a saliency map in posterior parietal cortex. We test the ability of the model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is a unitary construct, but recent experiments provide evidence for split attention foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention. Our results also point to a mechanism whereby inhibitory endogenous signals may play a role in dividing attention, suggesting a possible mechanism for inhibition of return.
doi_str_mv 10.1109/IJCNN.2005.1556385
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556385</ieee_id><sourcerecordid>1556385</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1e888c13f1477cd5686278bcfc801d08c10d0d48fb305036197667338c9e1e053</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRS0eEm3hB2DjH0iYycSvZRVBKarKBtZVajuSIY1R4hTx90RqWZ3F0bmLy9g9Qo4I5nH9Wm23eQEgchRCkhYXbFagxKwsQV2yOSgNZKDUxdW_IEM3bD4MnwAFGUMztlpyG7sUujGOA69T6mubYs87P_Z1OyH9xP6LH6LzLY8Nd-EYnHf8GIZx8lPgpzp2t-y6qdvB3525YB_PT-_VS7Z5W62r5SYLqETK0GutLVKDpVLWCallofTeNlYDOpgUOHClbvYEAkiiUVIqIm2NRw-CFuzhtBu897vvPhzq_nd3PoD-ACpaTSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A continuous attractor neural network model of divided visual attention</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Standage, D.I. ; Trappenberg, T.P. ; Klein, R.M.</creator><creatorcontrib>Standage, D.I. ; Trappenberg, T.P. ; Klein, R.M.</creatorcontrib><description>The biologically realistic model of selective visual attention by Deco et al. uses a continuous attractor neural network to simulate a saliency map in posterior parietal cortex. We test the ability of the model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is a unitary construct, but recent experiments provide evidence for split attention foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention. Our results also point to a mechanism whereby inhibitory endogenous signals may play a role in dividing attention, suggesting a possible mechanism for inhibition of return.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556385</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biology ; Brain modeling ; Computational modeling ; Computer science ; Computer simulation ; Electronic mail ; Neural networks ; Predictive models ; Psychology</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.2897-2902 vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Standage, D.I.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Klein, R.M.</creatorcontrib><title>A continuous attractor neural network model of divided visual attention</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>The biologically realistic model of selective visual attention by Deco et al. uses a continuous attractor neural network to simulate a saliency map in posterior parietal cortex. We test the ability of the model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is a unitary construct, but recent experiments provide evidence for split attention foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention. Our results also point to a mechanism whereby inhibitory endogenous signals may play a role in dividing attention, suggesting a possible mechanism for inhibition of return.</description><subject>Biological system modeling</subject><subject>Biology</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Electronic mail</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Psychology</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRS0eEm3hB2DjH0iYycSvZRVBKarKBtZVajuSIY1R4hTx90RqWZ3F0bmLy9g9Qo4I5nH9Wm23eQEgchRCkhYXbFagxKwsQV2yOSgNZKDUxdW_IEM3bD4MnwAFGUMztlpyG7sUujGOA69T6mubYs87P_Z1OyH9xP6LH6LzLY8Nd-EYnHf8GIZx8lPgpzp2t-y6qdvB3525YB_PT-_VS7Z5W62r5SYLqETK0GutLVKDpVLWCallofTeNlYDOpgUOHClbvYEAkiiUVIqIm2NRw-CFuzhtBu897vvPhzq_nd3PoD-ACpaTSg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Standage, D.I.</creator><creator>Trappenberg, T.P.</creator><creator>Klein, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A continuous attractor neural network model of divided visual attention</title><author>Standage, D.I. ; Trappenberg, T.P. ; Klein, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1e888c13f1477cd5686278bcfc801d08c10d0d48fb305036197667338c9e1e053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological system modeling</topic><topic>Biology</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Electronic mail</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Psychology</topic><toplevel>online_resources</toplevel><creatorcontrib>Standage, D.I.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><creatorcontrib>Klein, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Standage, D.I.</au><au>Trappenberg, T.P.</au><au>Klein, R.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A continuous attractor neural network model of divided visual attention</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>2897</spage><epage>2902 vol. 5</epage><pages>2897-2902 vol. 5</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>The biologically realistic model of selective visual attention by Deco et al. uses a continuous attractor neural network to simulate a saliency map in posterior parietal cortex. We test the ability of the model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is a unitary construct, but recent experiments provide evidence for split attention foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention. Our results also point to a mechanism whereby inhibitory endogenous signals may play a role in dividing attention, suggesting a possible mechanism for inhibition of return.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556385</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.2897-2902 vol. 5
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1556385
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Biology
Brain modeling
Computational modeling
Computer science
Computer simulation
Electronic mail
Neural networks
Predictive models
Psychology
title A continuous attractor neural network model of divided visual attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20continuous%20attractor%20neural%20network%20model%20of%20divided%20visual%20attention&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Standage,%20D.I.&rft.date=2005&rft.volume=5&rft.spage=2897&rft.epage=2902%20vol.%205&rft.pages=2897-2902%20vol.%205&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556385&rft_dat=%3Cieee_6IE%3E1556385%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556385&rfr_iscdi=true