Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data
A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2480 vol. 4 |
---|---|
container_issue | |
container_start_page | 2475 |
container_title | |
container_volume | 4 |
creator | Valdes, J.J. Barton, A.J. |
description | A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High quality networks from the point of view of both discrimination and generalization capabilities are discovered. The NDA mappings generated by these networks, together with unsupervised representations of the data, lead to a deeper understanding of complex high dimensional data like leukemia and Alzheimer gene expression microarray experiments. |
doi_str_mv | 10.1109/IJCNN.2005.1556291 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556291</ieee_id><sourcerecordid>1556291</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-fb2dbf007d18bf3c43d523fce39a4284e5f40bd2c5b763d44fde12179e1008d33</originalsourceid><addsrcrecordid>eNo1UEtOwzAUtPhItIULwMYXSHj-pInZVRWfoqpsgG3lxC-taepEtkspR-DUtKKsRqMZzWiGkGsGKWOgbifP49ks5QBZyrJsyBU7IT3OhiyREvJT0oe8AKFAFvzsXxBKXJB-CB8AXCgleuTn3fq40Q31qBsbd_TThgM1Omq6ts66Bd3auKSudY11qD01NlTe7jXtInW48Xu7w7ht_SrcUd11ja10tK2jsaUNbla4tppqZ-io-V6iXaOnC3RI8avzGMLBeai7JOe1bgJeHXFA3h7uX8dPyfTlcTIeTRPLmYpJXXJT1gC5YUVZi0oKk3FRVyiUlryQmNUSSsOrrMyHwkhZG2Sc5QoZQGGEGJCbv1yLiPNuP0X73fz4ofgFYexoFg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Valdes, J.J. ; Barton, A.J.</creator><creatorcontrib>Valdes, J.J. ; Barton, A.J.</creatorcontrib><description>A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High quality networks from the point of view of both discrimination and generalization capabilities are discovered. The NDA mappings generated by these networks, together with unsupervised representations of the data, lead to a deeper understanding of complex high dimensional data like leukemia and Alzheimer gene expression microarray experiments.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556291</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biology computing ; Computational modeling ; Computer networks ; Data mining ; Gene expression ; Neural networks ; Simulated annealing ; Throughput ; Virtual reality</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.4, p.2475-2480 vol. 4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valdes, J.J.</creatorcontrib><creatorcontrib>Barton, A.J.</creatorcontrib><title>Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High quality networks from the point of view of both discrimination and generalization capabilities are discovered. The NDA mappings generated by these networks, together with unsupervised representations of the data, lead to a deeper understanding of complex high dimensional data like leukemia and Alzheimer gene expression microarray experiments.</description><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Data mining</subject><subject>Gene expression</subject><subject>Neural networks</subject><subject>Simulated annealing</subject><subject>Throughput</subject><subject>Virtual reality</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUtPhItIULwMYXSHj-pInZVRWfoqpsgG3lxC-taepEtkspR-DUtKKsRqMZzWiGkGsGKWOgbifP49ks5QBZyrJsyBU7IT3OhiyREvJT0oe8AKFAFvzsXxBKXJB-CB8AXCgleuTn3fq40Q31qBsbd_TThgM1Omq6ts66Bd3auKSudY11qD01NlTe7jXtInW48Xu7w7ht_SrcUd11ja10tK2jsaUNbla4tppqZ-io-V6iXaOnC3RI8avzGMLBeai7JOe1bgJeHXFA3h7uX8dPyfTlcTIeTRPLmYpJXXJT1gC5YUVZi0oKk3FRVyiUlryQmNUSSsOrrMyHwkhZG2Sc5QoZQGGEGJCbv1yLiPNuP0X73fz4ofgFYexoFg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Valdes, J.J.</creator><creator>Barton, A.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data</title><author>Valdes, J.J. ; Barton, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-fb2dbf007d18bf3c43d523fce39a4284e5f40bd2c5b763d44fde12179e1008d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Data mining</topic><topic>Gene expression</topic><topic>Neural networks</topic><topic>Simulated annealing</topic><topic>Throughput</topic><topic>Virtual reality</topic><toplevel>online_resources</toplevel><creatorcontrib>Valdes, J.J.</creatorcontrib><creatorcontrib>Barton, A.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valdes, J.J.</au><au>Barton, A.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>2475</spage><epage>2480 vol. 4</epage><pages>2475-2480 vol. 4</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>A hybrid stochastic-deterministic approach for solving NDA problems on very high dimensional biological data is investigated. It is based on networks trained with a combination of simulated annealing and conjugate gradient within a broad scale, high throughput computing data mining environment. High quality networks from the point of view of both discrimination and generalization capabilities are discovered. The NDA mappings generated by these networks, together with unsupervised representations of the data, lead to a deeper understanding of complex high dimensional data like leukemia and Alzheimer gene expression microarray experiments.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556291</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.4, p.2475-2480 vol. 4 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_1556291 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Biology computing Computational modeling Computer networks Data mining Gene expression Neural networks Simulated annealing Throughput Virtual reality |
title | Virtual reality visual data mining with nonlinear discriminant neural networks: application to leukemia and Alzheimer gene expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Virtual%20reality%20visual%20data%20mining%20with%20nonlinear%20discriminant%20neural%20networks:%20application%20to%20leukemia%20and%20Alzheimer%20gene%20expression%20data&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Valdes,%20J.J.&rft.date=2005&rft.volume=4&rft.spage=2475&rft.epage=2480%20vol.%204&rft.pages=2475-2480%20vol.%204&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556291&rft_dat=%3Cieee_6IE%3E1556291%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556291&rfr_iscdi=true |