A comparative study of neural network to artificial noses

Artificial neural networks have been used to classify odor patterns and are showing promising results. In this paper we present four different models of neural networks to implement pattern recognition system in artificial noses. The models investigated are the multi-layer perceptrons, two different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ferreira, A.A., Ludermir, T.B., de Aquino, R.R.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2086 vol. 4
container_issue
container_start_page 2081
container_title
container_volume 4
creator Ferreira, A.A.
Ludermir, T.B.
de Aquino, R.R.B.
description Artificial neural networks have been used to classify odor patterns and are showing promising results. In this paper we present four different models of neural networks to implement pattern recognition system in artificial noses. The models investigated are the multi-layer perceptrons, two different implementations of the radial basis function networks and the probabilistic neural network. All the models were tested with and without temporal processing. A complex data base with nine different classes was used in this paper
doi_str_mv 10.1109/IJCNN.2005.1556221
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556221</ieee_id><sourcerecordid>1556221</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c74e7a6b443d7678e1df5bb0abf748cf7cb49e0bcd60672de7b45ce1a70e40d63</originalsourceid><addsrcrecordid>eNo1j8tKAzEYRoMXsK2-gG7yAjP-uU-WZfBSKXWj65LLH4i2TpmkSt9exbo68B344BByzaBlDOzt4qlfrVoOoFqmlOacnZAJZ5o1UoI5JVMwHQgLsuNn_0JYcUGmpbwBcGGtmBA7p2HY7tzoav5EWuo-HuiQ6AfuR7f5Qf0axndaB-rGmlMO-XcdCpZLcp7cpuDVkTPyen_30j82y-eHRT9fNpkZVZtgJBqnvZQiGm06ZDEp78H5ZGQXkgleWgQfogZteETjpQrInAGUELWYkZu_34yI692Yt248rI_J4htonkli</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparative study of neural network to artificial noses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ferreira, A.A. ; Ludermir, T.B. ; de Aquino, R.R.B.</creator><creatorcontrib>Ferreira, A.A. ; Ludermir, T.B. ; de Aquino, R.R.B.</creatorcontrib><description>Artificial neural networks have been used to classify odor patterns and are showing promising results. In this paper we present four different models of neural networks to implement pattern recognition system in artificial noses. The models investigated are the multi-layer perceptrons, two different implementations of the radial basis function networks and the probabilistic neural network. All the models were tested with and without temporal processing. A complex data base with nine different classes was used in this paper</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556221</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Contamination ; Monitoring ; Multi-layer neural network ; Multilayer perceptrons ; Neural networks ; Nose ; Pattern recognition ; Power system modeling</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.4, p.2081-2086 vol. 4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ferreira, A.A.</creatorcontrib><creatorcontrib>Ludermir, T.B.</creatorcontrib><creatorcontrib>de Aquino, R.R.B.</creatorcontrib><title>A comparative study of neural network to artificial noses</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Artificial neural networks have been used to classify odor patterns and are showing promising results. In this paper we present four different models of neural networks to implement pattern recognition system in artificial noses. The models investigated are the multi-layer perceptrons, two different implementations of the radial basis function networks and the probabilistic neural network. All the models were tested with and without temporal processing. A complex data base with nine different classes was used in this paper</description><subject>Artificial neural networks</subject><subject>Contamination</subject><subject>Monitoring</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nose</subject><subject>Pattern recognition</subject><subject>Power system modeling</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKAzEYRoMXsK2-gG7yAjP-uU-WZfBSKXWj65LLH4i2TpmkSt9exbo68B344BByzaBlDOzt4qlfrVoOoFqmlOacnZAJZ5o1UoI5JVMwHQgLsuNn_0JYcUGmpbwBcGGtmBA7p2HY7tzoav5EWuo-HuiQ6AfuR7f5Qf0axndaB-rGmlMO-XcdCpZLcp7cpuDVkTPyen_30j82y-eHRT9fNpkZVZtgJBqnvZQiGm06ZDEp78H5ZGQXkgleWgQfogZteETjpQrInAGUELWYkZu_34yI692Yt248rI_J4htonkli</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ferreira, A.A.</creator><creator>Ludermir, T.B.</creator><creator>de Aquino, R.R.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A comparative study of neural network to artificial noses</title><author>Ferreira, A.A. ; Ludermir, T.B. ; de Aquino, R.R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c74e7a6b443d7678e1df5bb0abf748cf7cb49e0bcd60672de7b45ce1a70e40d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Contamination</topic><topic>Monitoring</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nose</topic><topic>Pattern recognition</topic><topic>Power system modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, A.A.</creatorcontrib><creatorcontrib>Ludermir, T.B.</creatorcontrib><creatorcontrib>de Aquino, R.R.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferreira, A.A.</au><au>Ludermir, T.B.</au><au>de Aquino, R.R.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparative study of neural network to artificial noses</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>2081</spage><epage>2086 vol. 4</epage><pages>2081-2086 vol. 4</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Artificial neural networks have been used to classify odor patterns and are showing promising results. In this paper we present four different models of neural networks to implement pattern recognition system in artificial noses. The models investigated are the multi-layer perceptrons, two different implementations of the radial basis function networks and the probabilistic neural network. All the models were tested with and without temporal processing. A complex data base with nine different classes was used in this paper</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556221</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.4, p.2081-2086 vol. 4
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1556221
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Contamination
Monitoring
Multi-layer neural network
Multilayer perceptrons
Neural networks
Nose
Pattern recognition
Power system modeling
title A comparative study of neural network to artificial noses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparative%20study%20of%20neural%20network%20to%20artificial%20noses&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Ferreira,%20A.A.&rft.date=2005&rft.volume=4&rft.spage=2081&rft.epage=2086%20vol.%204&rft.pages=2081-2086%20vol.%204&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556221&rft_dat=%3Cieee_6IE%3E1556221%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556221&rfr_iscdi=true