Stochastic complexity of variational Bayesian hidden Markov models

Variational Bayesian learning was proposed as the approximation method of Bayesian learning. Inspite of efficiency and experimental good performance, their mathematical property has not yet been clarified. In this paper we analyze variational Bayesian hidden Markov models which include the true one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hosino, T., Watanabe, K., Watanabe, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119 vol. 2
container_issue
container_start_page 1114
container_title
container_volume 2
creator Hosino, T.
Watanabe, K.
Watanabe, S.
description Variational Bayesian learning was proposed as the approximation method of Bayesian learning. Inspite of efficiency and experimental good performance, their mathematical property has not yet been clarified. In this paper we analyze variational Bayesian hidden Markov models which include the true one thus the models are non-identifiable. We derive their asymptotic stochastic complexity. It is shown that, in some prior condition, the stochastic complexity is much smaller than those of identifiable models.
doi_str_mv 10.1109/IJCNN.2005.1556009
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556009</ieee_id><sourcerecordid>1556009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i200t-64c508ebb6212aab7b36e1063d2f0e64d09a102ede0c7e05ff7b6acab788d15d3</originalsourceid><addsrcrecordid>eNo1j8tOwzAURC0eEm3hB2DjH0i4tmMnXtKKQlEpC2Bd3cQ3qiGJqziqyN9TibKaxRyNzjB2KyAVAuz96mWx2aQSQKdCawNgz9hECiOSLIP8nE0hL0BZyAp58V8oq67YNMYvAKmsVRM2fx9CtcM4-IpXod039OOHkYeaH7D3OPjQYcPnOFL02PGdd446_or9dzjwNjhq4jW7rLGJdHPKGftcPn4snpP129Nq8bBO_FFySExWaSioLI0UErHMS2VIgFFO1kAmc2BRgCRHUOUEuq7z0mB1BIvCCe3UjN397Xoi2u5732I_bk_f1S-d2Ey5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic complexity of variational Bayesian hidden Markov models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hosino, T. ; Watanabe, K. ; Watanabe, S.</creator><creatorcontrib>Hosino, T. ; Watanabe, K. ; Watanabe, S.</creatorcontrib><description>Variational Bayesian learning was proposed as the approximation method of Bayesian learning. Inspite of efficiency and experimental good performance, their mathematical property has not yet been clarified. In this paper we analyze variational Bayesian hidden Markov models which include the true one thus the models are non-identifiable. We derive their asymptotic stochastic complexity. It is shown that, in some prior condition, the stochastic complexity is much smaller than those of identifiable models.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Bayesian methods ; Competitive intelligence ; Computational intelligence ; Hidden Markov models ; Natural language processing ; Speech recognition ; Stochastic processes</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.2, p.1114-1119 vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosino, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><title>Stochastic complexity of variational Bayesian hidden Markov models</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Variational Bayesian learning was proposed as the approximation method of Bayesian learning. Inspite of efficiency and experimental good performance, their mathematical property has not yet been clarified. In this paper we analyze variational Bayesian hidden Markov models which include the true one thus the models are non-identifiable. We derive their asymptotic stochastic complexity. It is shown that, in some prior condition, the stochastic complexity is much smaller than those of identifiable models.</description><subject>Approximation methods</subject><subject>Bayesian methods</subject><subject>Competitive intelligence</subject><subject>Computational intelligence</subject><subject>Hidden Markov models</subject><subject>Natural language processing</subject><subject>Speech recognition</subject><subject>Stochastic processes</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tOwzAURC0eEm3hB2DjH0i4tmMnXtKKQlEpC2Bd3cQ3qiGJqziqyN9TibKaxRyNzjB2KyAVAuz96mWx2aQSQKdCawNgz9hECiOSLIP8nE0hL0BZyAp58V8oq67YNMYvAKmsVRM2fx9CtcM4-IpXod039OOHkYeaH7D3OPjQYcPnOFL02PGdd446_or9dzjwNjhq4jW7rLGJdHPKGftcPn4snpP129Nq8bBO_FFySExWaSioLI0UErHMS2VIgFFO1kAmc2BRgCRHUOUEuq7z0mB1BIvCCe3UjN397Xoi2u5732I_bk_f1S-d2Ey5</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hosino, T.</creator><creator>Watanabe, K.</creator><creator>Watanabe, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Stochastic complexity of variational Bayesian hidden Markov models</title><author>Hosino, T. ; Watanabe, K. ; Watanabe, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i200t-64c508ebb6212aab7b36e1063d2f0e64d09a102ede0c7e05ff7b6acab788d15d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation methods</topic><topic>Bayesian methods</topic><topic>Competitive intelligence</topic><topic>Computational intelligence</topic><topic>Hidden Markov models</topic><topic>Natural language processing</topic><topic>Speech recognition</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosino, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosino, T.</au><au>Watanabe, K.</au><au>Watanabe, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic complexity of variational Bayesian hidden Markov models</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>1114</spage><epage>1119 vol. 2</epage><pages>1114-1119 vol. 2</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Variational Bayesian learning was proposed as the approximation method of Bayesian learning. Inspite of efficiency and experimental good performance, their mathematical property has not yet been clarified. In this paper we analyze variational Bayesian hidden Markov models which include the true one thus the models are non-identifiable. We derive their asymptotic stochastic complexity. It is shown that, in some prior condition, the stochastic complexity is much smaller than those of identifiable models.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556009</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.2, p.1114-1119 vol. 2
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1556009
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Bayesian methods
Competitive intelligence
Computational intelligence
Hidden Markov models
Natural language processing
Speech recognition
Stochastic processes
title Stochastic complexity of variational Bayesian hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20complexity%20of%20variational%20Bayesian%20hidden%20Markov%20models&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Hosino,%20T.&rft.date=2005&rft.volume=2&rft.spage=1114&rft.epage=1119%20vol.%202&rft.pages=1114-1119%20vol.%202&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556009&rft_dat=%3Cieee_6IE%3E1556009%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556009&rfr_iscdi=true