Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle
Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 vol. 1 |
---|---|
container_issue | |
container_start_page | 355 |
container_title | |
container_volume | 1 |
creator | Harmon, F.G. Frank, A.A. Joshi, S.S. |
description | Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission. |
doi_str_mv | 10.1109/IJCNN.2005.1555856 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1555856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1555856</ieee_id><sourcerecordid>1555856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5235010fd1b32bdf515e02abf3a7f44ac9664808564fb6d48a1732f83ff424c3</originalsourceid><addsrcrecordid>eNo1kEtOwzAYhC0eEm3hArDxBVL8zGNZRVCKStnAunKc36rBiSPbBfUEXJugltUs5psZaRC6pWROKanuV8_1ZjNnhMg5lVKWMj9DE0ZzmglBinM0JUVJeEVEyS7-DV7xKzSN8YMQxquKT9DPYhic1SpZ32NvsML1y6LGPeyDcqOkbx8-cfI47QBr36fg3ZEb1Eg4cHh3aIJtM3CgU7AaD8EPexf_CuMhJuiw8WEMxG7k8b7vVN9DixUEO058wc5qB9fo0igX4eakM_T--PBWP2Xr1-WqXqwzSwuZMiMZl4QS09KGs6Y1kkogTDWGq8IIoXSV56Ik4xvCNHkrSkULzkzJjRFMaD5Dd8deCwDbIdhOhcP2dCD_BUqXZNU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</creator><creatorcontrib>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</creatorcontrib><description>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1555856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Control systems ; Digital arithmetic ; Electromechanical devices ; Military computing ; Neural networks ; Nonlinear control systems ; Propulsion ; Thermodynamics ; Unmanned aerial vehicles</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.1, p.355-360 vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1555856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1555856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harmon, F.G.</creatorcontrib><creatorcontrib>Frank, A.A.</creatorcontrib><creatorcontrib>Joshi, S.S.</creatorcontrib><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</description><subject>Application software</subject><subject>Control systems</subject><subject>Digital arithmetic</subject><subject>Electromechanical devices</subject><subject>Military computing</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Propulsion</subject><subject>Thermodynamics</subject><subject>Unmanned aerial vehicles</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOwzAYhC0eEm3hArDxBVL8zGNZRVCKStnAunKc36rBiSPbBfUEXJugltUs5psZaRC6pWROKanuV8_1ZjNnhMg5lVKWMj9DE0ZzmglBinM0JUVJeEVEyS7-DV7xKzSN8YMQxquKT9DPYhic1SpZ32NvsML1y6LGPeyDcqOkbx8-cfI47QBr36fg3ZEb1Eg4cHh3aIJtM3CgU7AaD8EPexf_CuMhJuiw8WEMxG7k8b7vVN9DixUEO058wc5qB9fo0igX4eakM_T--PBWP2Xr1-WqXqwzSwuZMiMZl4QS09KGs6Y1kkogTDWGq8IIoXSV56Ik4xvCNHkrSkULzkzJjRFMaD5Dd8deCwDbIdhOhcP2dCD_BUqXZNU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Harmon, F.G.</creator><creator>Frank, A.A.</creator><creator>Joshi, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><author>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5235010fd1b32bdf515e02abf3a7f44ac9664808564fb6d48a1732f83ff424c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Application software</topic><topic>Control systems</topic><topic>Digital arithmetic</topic><topic>Electromechanical devices</topic><topic>Military computing</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Propulsion</topic><topic>Thermodynamics</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Harmon, F.G.</creatorcontrib><creatorcontrib>Frank, A.A.</creatorcontrib><creatorcontrib>Joshi, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harmon, F.G.</au><au>Frank, A.A.</au><au>Joshi, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>355</spage><epage>360 vol. 1</epage><pages>355-360 vol. 1</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1555856</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.1, p.355-360 vol. 1 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_1555856 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Control systems Digital arithmetic Electromechanical devices Military computing Neural networks Nonlinear control systems Propulsion Thermodynamics Unmanned aerial vehicles |
title | Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20a%20CMAC%20neural%20network%20to%20the%20control%20of%20a%20parallel%20hybrid-electric%20propulsion%20system%20for%20a%20small%20unmanned%20aerial%20vehicle&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Harmon,%20F.G.&rft.date=2005&rft.volume=1&rft.spage=355&rft.epage=360%20vol.%201&rft.pages=355-360%20vol.%201&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1555856&rft_dat=%3Cieee_6IE%3E1555856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1555856&rfr_iscdi=true |