Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harmon, F.G., Frank, A.A., Joshi, S.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360 vol. 1
container_issue
container_start_page 355
container_title
container_volume 1
creator Harmon, F.G.
Frank, A.A.
Joshi, S.S.
description Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.
doi_str_mv 10.1109/IJCNN.2005.1555856
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1555856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1555856</ieee_id><sourcerecordid>1555856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5235010fd1b32bdf515e02abf3a7f44ac9664808564fb6d48a1732f83ff424c3</originalsourceid><addsrcrecordid>eNo1kEtOwzAYhC0eEm3hArDxBVL8zGNZRVCKStnAunKc36rBiSPbBfUEXJugltUs5psZaRC6pWROKanuV8_1ZjNnhMg5lVKWMj9DE0ZzmglBinM0JUVJeEVEyS7-DV7xKzSN8YMQxquKT9DPYhic1SpZ32NvsML1y6LGPeyDcqOkbx8-cfI47QBr36fg3ZEb1Eg4cHh3aIJtM3CgU7AaD8EPexf_CuMhJuiw8WEMxG7k8b7vVN9DixUEO058wc5qB9fo0igX4eakM_T--PBWP2Xr1-WqXqwzSwuZMiMZl4QS09KGs6Y1kkogTDWGq8IIoXSV56Ik4xvCNHkrSkULzkzJjRFMaD5Dd8deCwDbIdhOhcP2dCD_BUqXZNU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</creator><creatorcontrib>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</creatorcontrib><description>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1555856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Control systems ; Digital arithmetic ; Electromechanical devices ; Military computing ; Neural networks ; Nonlinear control systems ; Propulsion ; Thermodynamics ; Unmanned aerial vehicles</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.1, p.355-360 vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1555856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1555856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harmon, F.G.</creatorcontrib><creatorcontrib>Frank, A.A.</creatorcontrib><creatorcontrib>Joshi, S.S.</creatorcontrib><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</description><subject>Application software</subject><subject>Control systems</subject><subject>Digital arithmetic</subject><subject>Electromechanical devices</subject><subject>Military computing</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Propulsion</subject><subject>Thermodynamics</subject><subject>Unmanned aerial vehicles</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOwzAYhC0eEm3hArDxBVL8zGNZRVCKStnAunKc36rBiSPbBfUEXJugltUs5psZaRC6pWROKanuV8_1ZjNnhMg5lVKWMj9DE0ZzmglBinM0JUVJeEVEyS7-DV7xKzSN8YMQxquKT9DPYhic1SpZ32NvsML1y6LGPeyDcqOkbx8-cfI47QBr36fg3ZEb1Eg4cHh3aIJtM3CgU7AaD8EPexf_CuMhJuiw8WEMxG7k8b7vVN9DixUEO058wc5qB9fo0igX4eakM_T--PBWP2Xr1-WqXqwzSwuZMiMZl4QS09KGs6Y1kkogTDWGq8IIoXSV56Ik4xvCNHkrSkULzkzJjRFMaD5Dd8deCwDbIdhOhcP2dCD_BUqXZNU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Harmon, F.G.</creator><creator>Frank, A.A.</creator><creator>Joshi, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</title><author>Harmon, F.G. ; Frank, A.A. ; Joshi, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5235010fd1b32bdf515e02abf3a7f44ac9664808564fb6d48a1732f83ff424c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Application software</topic><topic>Control systems</topic><topic>Digital arithmetic</topic><topic>Electromechanical devices</topic><topic>Military computing</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Propulsion</topic><topic>Thermodynamics</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Harmon, F.G.</creatorcontrib><creatorcontrib>Frank, A.A.</creatorcontrib><creatorcontrib>Joshi, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harmon, F.G.</au><au>Frank, A.A.</au><au>Joshi, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>355</spage><epage>360 vol. 1</epage><pages>355-360 vol. 1</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Optimizing and controlling the energy use of a hybrid-electric propulsion system is difficult due to the interaction of nonlinear mechanical, thermodynamic, and electromechanical devices. An optimization routine for the energy use of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (UAV), the application of a cerebellar model arithmetic computer (CMAC) neural network to approximate the optimization results and control the hybrid-electric system, and simulation results are presented. The small hybrid-electric UAV is intended for military and homeland security missions involving intelligence, surveillance, or reconnaissance (ISR). The flexible optimization routine allows relative importance to be assigned between the use of gasoline, electricity, and recharging. The CMAC controller saves on the required memory compared to a look-up table by two orders of magnitude. The hybrid-electric UAV with the CMAC controller uses 37.8% less energy than a two-stroke gasoline-powered UAV during a three-hour ISR mission.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1555856</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.1, p.355-360 vol. 1
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1555856
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Control systems
Digital arithmetic
Electromechanical devices
Military computing
Neural networks
Nonlinear control systems
Propulsion
Thermodynamics
Unmanned aerial vehicles
title Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20a%20CMAC%20neural%20network%20to%20the%20control%20of%20a%20parallel%20hybrid-electric%20propulsion%20system%20for%20a%20small%20unmanned%20aerial%20vehicle&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Harmon,%20F.G.&rft.date=2005&rft.volume=1&rft.spage=355&rft.epage=360%20vol.%201&rft.pages=355-360%20vol.%201&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1555856&rft_dat=%3Cieee_6IE%3E1555856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1555856&rfr_iscdi=true