On social learning and robust evolutionary algorithm design in economic games

Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, the authors focused on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alkemade, F., La Poutre, H., Amman, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2452 Vol. 3
container_issue
container_start_page 2445
container_title
container_volume 3
creator Alkemade, F.
La Poutre, H.
Amman, H.
description Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, the authors focused on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the genetic algorithm directly from the values of the economic model parameters. In this paper, two important approaches that are dominating in ACE were compared and showed that the above practice may hinder the performance of the GA and thereby hinder agent learning. More specifically, it is shown that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Improved social (ACE) simulation results were also presented for the Cournot oligopoly game, yielding (higher profit) Cournot-Nash equilibria instead of the competitive equilibria.
doi_str_mv 10.1109/CEC.2005.1555000
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1555000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1555000</ieee_id><sourcerecordid>1555000</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1798cfae4ba6c6b5a8df6640f5696e4618222ff8a60dfc39bb09f2e7a3b3f1633</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMPsK3uBTf5A1PvTSavpQz1AZVuFNyVZCYZIzOJTKaC_96CXX2LA4fDR8gtwhoRzH2zadYMQKxRCAEAZ2SBpsYKgMlzsgSlgRsuubg4AtCmUkp_XJFlKV8AWAs0C_K6S7TkNtqBDt5OKaae2tTRKbtDman_ycNhjjnZ6Zfaoc9TnD9H2vkS-0Rjor7NKY-xpb0dfbkml8EOxd-cdkXeHzdvzXO13T29NA_bKqISc4XK6DZYXzsrW-mE1V2QsoYgpJG-lqgZYyFoK6ELLTfOgQnMK8sdDyg5X5G7f2_03u-_pzge-_anG_gf4w1QCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On social learning and robust evolutionary algorithm design in economic games</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alkemade, F. ; La Poutre, H. ; Amman, H.</creator><creatorcontrib>Alkemade, F. ; La Poutre, H. ; Amman, H.</creatorcontrib><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, the authors focused on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the genetic algorithm directly from the values of the economic model parameters. In this paper, two important approaches that are dominating in ACE were compared and showed that the above practice may hinder the performance of the GA and thereby hinder agent learning. More specifically, it is shown that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Improved social (ACE) simulation results were also presented for the Cournot oligopoly game, yielding (higher profit) Cournot-Nash equilibria instead of the competitive equilibria.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 0780393635</identifier><identifier>ISBN: 9780780393639</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2005.1555000</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Computational modeling ; Computer science ; Convergence ; Environmental economics ; Evolutionary computation ; Genetic algorithms ; Mathematics ; Oligopoly ; Robustness</subject><ispartof>2005 IEEE Congress on Evolutionary Computation, 2005, Vol.3, p.2445-2452 Vol. 3</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1555000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,4050,4051,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1555000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alkemade, F.</creatorcontrib><creatorcontrib>La Poutre, H.</creatorcontrib><creatorcontrib>Amman, H.</creatorcontrib><title>On social learning and robust evolutionary algorithm design in economic games</title><title>2005 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, the authors focused on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the genetic algorithm directly from the values of the economic model parameters. In this paper, two important approaches that are dominating in ACE were compared and showed that the above practice may hinder the performance of the GA and thereby hinder agent learning. More specifically, it is shown that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Improved social (ACE) simulation results were also presented for the Cournot oligopoly game, yielding (higher profit) Cournot-Nash equilibria instead of the competitive equilibria.</description><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Convergence</subject><subject>Environmental economics</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Mathematics</subject><subject>Oligopoly</subject><subject>Robustness</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>0780393635</isbn><isbn>9780780393639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLAzEURoMPsK3uBTf5A1PvTSavpQz1AZVuFNyVZCYZIzOJTKaC_96CXX2LA4fDR8gtwhoRzH2zadYMQKxRCAEAZ2SBpsYKgMlzsgSlgRsuubg4AtCmUkp_XJFlKV8AWAs0C_K6S7TkNtqBDt5OKaae2tTRKbtDman_ycNhjjnZ6Zfaoc9TnD9H2vkS-0Rjor7NKY-xpb0dfbkml8EOxd-cdkXeHzdvzXO13T29NA_bKqISc4XK6DZYXzsrW-mE1V2QsoYgpJG-lqgZYyFoK6ELLTfOgQnMK8sdDyg5X5G7f2_03u-_pzge-_anG_gf4w1QCw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Alkemade, F.</creator><creator>La Poutre, H.</creator><creator>Amman, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>On social learning and robust evolutionary algorithm design in economic games</title><author>Alkemade, F. ; La Poutre, H. ; Amman, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1798cfae4ba6c6b5a8df6640f5696e4618222ff8a60dfc39bb09f2e7a3b3f1633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Convergence</topic><topic>Environmental economics</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Mathematics</topic><topic>Oligopoly</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkemade, F.</creatorcontrib><creatorcontrib>La Poutre, H.</creatorcontrib><creatorcontrib>Amman, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alkemade, F.</au><au>La Poutre, H.</au><au>Amman, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On social learning and robust evolutionary algorithm design in economic games</atitle><btitle>2005 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2005</date><risdate>2005</risdate><volume>3</volume><spage>2445</spage><epage>2452 Vol. 3</epage><pages>2445-2452 Vol. 3</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>0780393635</isbn><isbn>9780780393639</isbn><abstract>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, the authors focused on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the genetic algorithm directly from the values of the economic model parameters. In this paper, two important approaches that are dominating in ACE were compared and showed that the above practice may hinder the performance of the GA and thereby hinder agent learning. More specifically, it is shown that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Improved social (ACE) simulation results were also presented for the Cournot oligopoly game, yielding (higher profit) Cournot-Nash equilibria instead of the competitive equilibria.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2005.1555000</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2005 IEEE Congress on Evolutionary Computation, 2005, Vol.3, p.2445-2452 Vol. 3
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1555000
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Computational modeling
Computer science
Convergence
Environmental economics
Evolutionary computation
Genetic algorithms
Mathematics
Oligopoly
Robustness
title On social learning and robust evolutionary algorithm design in economic games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20social%20learning%20and%20robust%20evolutionary%20algorithm%20design%20in%20economic%20games&rft.btitle=2005%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Alkemade,%20F.&rft.date=2005&rft.volume=3&rft.spage=2445&rft.epage=2452%20Vol.%203&rft.pages=2445-2452%20Vol.%203&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=0780393635&rft.isbn_list=9780780393639&rft_id=info:doi/10.1109/CEC.2005.1555000&rft_dat=%3Cieee_6IE%3E1555000%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1555000&rfr_iscdi=true