Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction
This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Cheng-Long Chuang Yen-Ling Lu Tsong-Liang Huang Ying-Tung Hsiao Joe-Air Jiang |
description | This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event |
doi_str_mv | 10.1109/TDC.2005.1546956 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1546956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546956</ieee_id><sourcerecordid>1546956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-4ee58645aa2b569c8274a8a14f30fa9ec52ccf7927c609fc5c33f86fe274f8813</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0eEqV0j8TGP5Dgdxx2qOVRqUCBdl25ZlwMaVLZjlD_HktUrM7izL2jGYQuKSkpJfX1YjIuGSGypFKoWqojNGBUkUIrIY7ROak04TWlQpz8C67O0CjGL0IIVZrxSg5QeAPbbVqffNfizuGnvkl-1wCev-KJj6kPa9NaiHgZfbvBk31rtt7i9xR6myXgZ-iDaTLSTxe-Iy7w3ISE6Q1efEIXIHmb9bRNofvIkbzmAp0600QYHThEy_u7xfixmL08TMe3s8JTxlMhAGQ-RhrD1lLVVrNKGG2ocJw4U4OVzFpX1ayyitTOSsu508pBnnNaUz5EV3-9HgBWu-C3JuxXh3fxX1c3XTM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</creator><creatorcontrib>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</creatorcontrib><description>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</description><identifier>ISSN: 2160-8636</identifier><identifier>ISBN: 0780391144</identifier><identifier>ISBN: 9780780391147</identifier><identifier>EISSN: 2160-8644</identifier><identifier>DOI: 10.1109/TDC.2005.1546956</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distortion measurement ; Graphical user interfaces ; Mechatronics ; Neural networks ; pattern recognition ; Power measurement ; Power quality ; Power system dynamics ; Power system transients ; Power systems ; Voltage fluctuations ; wavelet transform ; Wavelet transforms</subject><ispartof>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng-Long Chuang</creatorcontrib><creatorcontrib>Yen-Ling Lu</creatorcontrib><creatorcontrib>Tsong-Liang Huang</creatorcontrib><creatorcontrib>Ying-Tung Hsiao</creatorcontrib><creatorcontrib>Joe-Air Jiang</creatorcontrib><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><title>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific</title><addtitle>TDC</addtitle><description>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</description><subject>Distortion measurement</subject><subject>Graphical user interfaces</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>pattern recognition</subject><subject>Power measurement</subject><subject>Power quality</subject><subject>Power system dynamics</subject><subject>Power system transients</subject><subject>Power systems</subject><subject>Voltage fluctuations</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>2160-8636</issn><issn>2160-8644</issn><isbn>0780391144</isbn><isbn>9780780391147</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0eEqV0j8TGP5Dgdxx2qOVRqUCBdl25ZlwMaVLZjlD_HktUrM7izL2jGYQuKSkpJfX1YjIuGSGypFKoWqojNGBUkUIrIY7ROak04TWlQpz8C67O0CjGL0IIVZrxSg5QeAPbbVqffNfizuGnvkl-1wCev-KJj6kPa9NaiHgZfbvBk31rtt7i9xR6myXgZ-iDaTLSTxe-Iy7w3ISE6Q1efEIXIHmb9bRNofvIkbzmAp0600QYHThEy_u7xfixmL08TMe3s8JTxlMhAGQ-RhrD1lLVVrNKGG2ocJw4U4OVzFpX1ayyitTOSsu508pBnnNaUz5EV3-9HgBWu-C3JuxXh3fxX1c3XTM</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Cheng-Long Chuang</creator><creator>Yen-Ling Lu</creator><creator>Tsong-Liang Huang</creator><creator>Ying-Tung Hsiao</creator><creator>Joe-Air Jiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><author>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-4ee58645aa2b569c8274a8a14f30fa9ec52ccf7927c609fc5c33f86fe274f8813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Distortion measurement</topic><topic>Graphical user interfaces</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>pattern recognition</topic><topic>Power measurement</topic><topic>Power quality</topic><topic>Power system dynamics</topic><topic>Power system transients</topic><topic>Power systems</topic><topic>Voltage fluctuations</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng-Long Chuang</creatorcontrib><creatorcontrib>Yen-Ling Lu</creatorcontrib><creatorcontrib>Tsong-Liang Huang</creatorcontrib><creatorcontrib>Ying-Tung Hsiao</creatorcontrib><creatorcontrib>Joe-Air Jiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng-Long Chuang</au><au>Yen-Ling Lu</au><au>Tsong-Liang Huang</au><au>Ying-Tung Hsiao</au><au>Joe-Air Jiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</atitle><btitle>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific</btitle><stitle>TDC</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2160-8636</issn><eissn>2160-8644</eissn><isbn>0780391144</isbn><isbn>9780780391147</isbn><abstract>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</abstract><pub>IEEE</pub><doi>10.1109/TDC.2005.1546956</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-8636 |
ispartof | 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6 |
issn | 2160-8636 2160-8644 |
language | eng |
recordid | cdi_ieee_primary_1546956 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Distortion measurement Graphical user interfaces Mechatronics Neural networks pattern recognition Power measurement Power quality Power system dynamics Power system transients Power systems Voltage fluctuations wavelet transform Wavelet transforms |
title | Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20Multiple%20PQ%20Disturbances%20Using%20Dynamic%20Structure%20Neural%20Networks%20-%20Part%201:%20Theoretical%20Introduction&rft.btitle=2005%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20&%20Exposition:%20Asia%20and%20Pacific&rft.au=Cheng-Long%20Chuang&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2160-8636&rft.eissn=2160-8644&rft.isbn=0780391144&rft.isbn_list=9780780391147&rft_id=info:doi/10.1109/TDC.2005.1546956&rft_dat=%3Cieee_6IE%3E1546956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1546956&rfr_iscdi=true |