Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction

This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng-Long Chuang, Yen-Ling Lu, Tsong-Liang Huang, Ying-Tung Hsiao, Joe-Air Jiang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Cheng-Long Chuang
Yen-Ling Lu
Tsong-Liang Huang
Ying-Tung Hsiao
Joe-Air Jiang
description This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event
doi_str_mv 10.1109/TDC.2005.1546956
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1546956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546956</ieee_id><sourcerecordid>1546956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-4ee58645aa2b569c8274a8a14f30fa9ec52ccf7927c609fc5c33f86fe274f8813</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0eEqV0j8TGP5Dgdxx2qOVRqUCBdl25ZlwMaVLZjlD_HktUrM7izL2jGYQuKSkpJfX1YjIuGSGypFKoWqojNGBUkUIrIY7ROak04TWlQpz8C67O0CjGL0IIVZrxSg5QeAPbbVqffNfizuGnvkl-1wCev-KJj6kPa9NaiHgZfbvBk31rtt7i9xR6myXgZ-iDaTLSTxe-Iy7w3ISE6Q1efEIXIHmb9bRNofvIkbzmAp0600QYHThEy_u7xfixmL08TMe3s8JTxlMhAGQ-RhrD1lLVVrNKGG2ocJw4U4OVzFpX1ayyitTOSsu508pBnnNaUz5EV3-9HgBWu-C3JuxXh3fxX1c3XTM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</creator><creatorcontrib>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</creatorcontrib><description>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</description><identifier>ISSN: 2160-8636</identifier><identifier>ISBN: 0780391144</identifier><identifier>ISBN: 9780780391147</identifier><identifier>EISSN: 2160-8644</identifier><identifier>DOI: 10.1109/TDC.2005.1546956</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distortion measurement ; Graphical user interfaces ; Mechatronics ; Neural networks ; pattern recognition ; Power measurement ; Power quality ; Power system dynamics ; Power system transients ; Power systems ; Voltage fluctuations ; wavelet transform ; Wavelet transforms</subject><ispartof>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng-Long Chuang</creatorcontrib><creatorcontrib>Yen-Ling Lu</creatorcontrib><creatorcontrib>Tsong-Liang Huang</creatorcontrib><creatorcontrib>Ying-Tung Hsiao</creatorcontrib><creatorcontrib>Joe-Air Jiang</creatorcontrib><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><title>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific</title><addtitle>TDC</addtitle><description>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</description><subject>Distortion measurement</subject><subject>Graphical user interfaces</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>pattern recognition</subject><subject>Power measurement</subject><subject>Power quality</subject><subject>Power system dynamics</subject><subject>Power system transients</subject><subject>Power systems</subject><subject>Voltage fluctuations</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>2160-8636</issn><issn>2160-8644</issn><isbn>0780391144</isbn><isbn>9780780391147</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0eEqV0j8TGP5Dgdxx2qOVRqUCBdl25ZlwMaVLZjlD_HktUrM7izL2jGYQuKSkpJfX1YjIuGSGypFKoWqojNGBUkUIrIY7ROak04TWlQpz8C67O0CjGL0IIVZrxSg5QeAPbbVqffNfizuGnvkl-1wCev-KJj6kPa9NaiHgZfbvBk31rtt7i9xR6myXgZ-iDaTLSTxe-Iy7w3ISE6Q1efEIXIHmb9bRNofvIkbzmAp0600QYHThEy_u7xfixmL08TMe3s8JTxlMhAGQ-RhrD1lLVVrNKGG2ocJw4U4OVzFpX1ayyitTOSsu508pBnnNaUz5EV3-9HgBWu-C3JuxXh3fxX1c3XTM</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Cheng-Long Chuang</creator><creator>Yen-Ling Lu</creator><creator>Tsong-Liang Huang</creator><creator>Ying-Tung Hsiao</creator><creator>Joe-Air Jiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</title><author>Cheng-Long Chuang ; Yen-Ling Lu ; Tsong-Liang Huang ; Ying-Tung Hsiao ; Joe-Air Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-4ee58645aa2b569c8274a8a14f30fa9ec52ccf7927c609fc5c33f86fe274f8813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Distortion measurement</topic><topic>Graphical user interfaces</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>pattern recognition</topic><topic>Power measurement</topic><topic>Power quality</topic><topic>Power system dynamics</topic><topic>Power system transients</topic><topic>Power systems</topic><topic>Voltage fluctuations</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng-Long Chuang</creatorcontrib><creatorcontrib>Yen-Ling Lu</creatorcontrib><creatorcontrib>Tsong-Liang Huang</creatorcontrib><creatorcontrib>Ying-Tung Hsiao</creatorcontrib><creatorcontrib>Joe-Air Jiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng-Long Chuang</au><au>Yen-Ling Lu</au><au>Tsong-Liang Huang</au><au>Ying-Tung Hsiao</au><au>Joe-Air Jiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction</atitle><btitle>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific</btitle><stitle>TDC</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2160-8636</issn><eissn>2160-8644</eissn><isbn>0780391144</isbn><isbn>9780780391147</isbn><abstract>This work develops a new approach to recognize multiple disturbances for a power quality (PQ) event in power systems. It is usual that several different types of disturbances simultaneously exist in a PQ event. However, most of the existing methods treat a PQ event as a single type of PQ disturbance. The performance of these methods might be limited and impracticable for application in the real power systems. This work proposes a novel approach integrated the wavelet transform and dynamic structural neural network (DSNN) to identify disturbance waveforms. The proposed neural network has the capability of adapting to multiple disturbances for a PQ event. In the proposed approach, the disturbance waveforms are extracted by the wavelet transform and then fed to the DSNN for identifying the types of disturbances. The distinctive features of the proposed method are that it can estimate the amplitude of the considering event, recognize transient and steady state disturbances which are simultaneous existed in a PQ event</abstract><pub>IEEE</pub><doi>10.1109/TDC.2005.1546956</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-8636
ispartof 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6
issn 2160-8636
2160-8644
language eng
recordid cdi_ieee_primary_1546956
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Distortion measurement
Graphical user interfaces
Mechatronics
Neural networks
pattern recognition
Power measurement
Power quality
Power system dynamics
Power system transients
Power systems
Voltage fluctuations
wavelet transform
Wavelet transforms
title Recognition of Multiple PQ Disturbances Using Dynamic Structure Neural Networks - Part 1: Theoretical Introduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20Multiple%20PQ%20Disturbances%20Using%20Dynamic%20Structure%20Neural%20Networks%20-%20Part%201:%20Theoretical%20Introduction&rft.btitle=2005%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20&%20Exposition:%20Asia%20and%20Pacific&rft.au=Cheng-Long%20Chuang&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2160-8636&rft.eissn=2160-8644&rft.isbn=0780391144&rft.isbn_list=9780780391147&rft_id=info:doi/10.1109/TDC.2005.1546956&rft_dat=%3Cieee_6IE%3E1546956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1546956&rfr_iscdi=true