A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters
For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yunting Song Guangquan Bu Ruihua Zhang |
description | For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm |
doi_str_mv | 10.1109/TDC.2005.1546789 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1546789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546789</ieee_id><sourcerecordid>1546789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-40d3708b0823170afa6628f08cfbcd2615f7d368485846b2c9dd645a675ef5963</originalsourceid><addsrcrecordid>eNo9kE1PAjEYhBs_EhG5m3h5_8Di291-7RGRVRMQIngm3d1WKwtr2hLCxd8uUfT0ZDKTyWQIuabYpxTz28X9sJ8i8j7lTEiVn5BOSgUmSjB2Si5RKsxyShk7-zcycUF6IXwgIhUqzSTvkK8BFDpEmJj43tZgWw8z35a6dI0L0VXwYhr3o-IeBiGYENZmE6G1cLdtVjBrd8bDfB-iWcNrcJs3KObTCTybrdfNAXHX-hXo8JeZRx1NgMI10fhwRc6tboLpHdkli2K0GD4m4-nD03AwTlyOMWFYZxJViYfRVKK2WohUWVSVLas6FZRbWWdCMcUVE2Va5XUtGNdCcmN5LrIuufmtdcaY5ad3a-33y-Nz2TdlXGAm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunting Song ; Guangquan Bu ; Ruihua Zhang</creator><creatorcontrib>Yunting Song ; Guangquan Bu ; Ruihua Zhang</creatorcontrib><description>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</description><identifier>ISSN: 2160-8636</identifier><identifier>ISBN: 0780391144</identifier><identifier>ISBN: 9780780391147</identifier><identifier>EISSN: 2160-8644</identifier><identifier>DOI: 10.1109/TDC.2005.1546789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bulk Power System ; Computer networks ; Filters ; FSOM Neural Network ; Fuzzy neural networks ; Fuzzy systems ; Monte-Carlo Simulation ; Neural networks ; Organizing ; Power system reliability ; Power system simulation ; Probabilistic Reliability Assessment (PRA) ; Sampling methods ; System States Filter ; System testing</subject><ispartof>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunting Song</creatorcontrib><creatorcontrib>Guangquan Bu</creatorcontrib><creatorcontrib>Ruihua Zhang</creatorcontrib><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><title>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific</title><addtitle>TDC</addtitle><description>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</description><subject>Bulk Power System</subject><subject>Computer networks</subject><subject>Filters</subject><subject>FSOM Neural Network</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Monte-Carlo Simulation</subject><subject>Neural networks</subject><subject>Organizing</subject><subject>Power system reliability</subject><subject>Power system simulation</subject><subject>Probabilistic Reliability Assessment (PRA)</subject><subject>Sampling methods</subject><subject>System States Filter</subject><subject>System testing</subject><issn>2160-8636</issn><issn>2160-8644</issn><isbn>0780391144</isbn><isbn>9780780391147</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEYhBs_EhG5m3h5_8Di291-7RGRVRMQIngm3d1WKwtr2hLCxd8uUfT0ZDKTyWQIuabYpxTz28X9sJ8i8j7lTEiVn5BOSgUmSjB2Si5RKsxyShk7-zcycUF6IXwgIhUqzSTvkK8BFDpEmJj43tZgWw8z35a6dI0L0VXwYhr3o-IeBiGYENZmE6G1cLdtVjBrd8bDfB-iWcNrcJs3KObTCTybrdfNAXHX-hXo8JeZRx1NgMI10fhwRc6tboLpHdkli2K0GD4m4-nD03AwTlyOMWFYZxJViYfRVKK2WohUWVSVLas6FZRbWWdCMcUVE2Va5XUtGNdCcmN5LrIuufmtdcaY5ad3a-33y-Nz2TdlXGAm</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yunting Song</creator><creator>Guangquan Bu</creator><creator>Ruihua Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><author>Yunting Song ; Guangquan Bu ; Ruihua Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-40d3708b0823170afa6628f08cfbcd2615f7d368485846b2c9dd645a675ef5963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bulk Power System</topic><topic>Computer networks</topic><topic>Filters</topic><topic>FSOM Neural Network</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Monte-Carlo Simulation</topic><topic>Neural networks</topic><topic>Organizing</topic><topic>Power system reliability</topic><topic>Power system simulation</topic><topic>Probabilistic Reliability Assessment (PRA)</topic><topic>Sampling methods</topic><topic>System States Filter</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunting Song</creatorcontrib><creatorcontrib>Guangquan Bu</creatorcontrib><creatorcontrib>Ruihua Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunting Song</au><au>Guangquan Bu</au><au>Ruihua Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</atitle><btitle>2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific</btitle><stitle>TDC</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2160-8636</issn><eissn>2160-8644</eissn><isbn>0780391144</isbn><isbn>9780780391147</isbn><abstract>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</abstract><pub>IEEE</pub><doi>10.1109/TDC.2005.1546789</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-8636 |
ispartof | 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6 |
issn | 2160-8636 2160-8644 |
language | eng |
recordid | cdi_ieee_primary_1546789 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bulk Power System Computer networks Filters FSOM Neural Network Fuzzy neural networks Fuzzy systems Monte-Carlo Simulation Neural networks Organizing Power system reliability Power system simulation Probabilistic Reliability Assessment (PRA) Sampling methods System States Filter System testing |
title | A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fast%20Method%20for%20Probabilistic%20Reliability%20Assessment%20of%20Bulk%20Power%20System%20Using%20FSOM%20Neural%20Network%20as%20System%20States%20Filters&rft.btitle=2005%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20&%20Exposition:%20Asia%20and%20Pacific&rft.au=Yunting%20Song&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2160-8636&rft.eissn=2160-8644&rft.isbn=0780391144&rft.isbn_list=9780780391147&rft_id=info:doi/10.1109/TDC.2005.1546789&rft_dat=%3Cieee_6IE%3E1546789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1546789&rfr_iscdi=true |