A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters

For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yunting Song, Guangquan Bu, Ruihua Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Yunting Song
Guangquan Bu
Ruihua Zhang
description For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm
doi_str_mv 10.1109/TDC.2005.1546789
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1546789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546789</ieee_id><sourcerecordid>1546789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-40d3708b0823170afa6628f08cfbcd2615f7d368485846b2c9dd645a675ef5963</originalsourceid><addsrcrecordid>eNo9kE1PAjEYhBs_EhG5m3h5_8Di291-7RGRVRMQIngm3d1WKwtr2hLCxd8uUfT0ZDKTyWQIuabYpxTz28X9sJ8i8j7lTEiVn5BOSgUmSjB2Si5RKsxyShk7-zcycUF6IXwgIhUqzSTvkK8BFDpEmJj43tZgWw8z35a6dI0L0VXwYhr3o-IeBiGYENZmE6G1cLdtVjBrd8bDfB-iWcNrcJs3KObTCTybrdfNAXHX-hXo8JeZRx1NgMI10fhwRc6tboLpHdkli2K0GD4m4-nD03AwTlyOMWFYZxJViYfRVKK2WohUWVSVLas6FZRbWWdCMcUVE2Va5XUtGNdCcmN5LrIuufmtdcaY5ad3a-33y-Nz2TdlXGAm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunting Song ; Guangquan Bu ; Ruihua Zhang</creator><creatorcontrib>Yunting Song ; Guangquan Bu ; Ruihua Zhang</creatorcontrib><description>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</description><identifier>ISSN: 2160-8636</identifier><identifier>ISBN: 0780391144</identifier><identifier>ISBN: 9780780391147</identifier><identifier>EISSN: 2160-8644</identifier><identifier>DOI: 10.1109/TDC.2005.1546789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bulk Power System ; Computer networks ; Filters ; FSOM Neural Network ; Fuzzy neural networks ; Fuzzy systems ; Monte-Carlo Simulation ; Neural networks ; Organizing ; Power system reliability ; Power system simulation ; Probabilistic Reliability Assessment (PRA) ; Sampling methods ; System States Filter ; System testing</subject><ispartof>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunting Song</creatorcontrib><creatorcontrib>Guangquan Bu</creatorcontrib><creatorcontrib>Ruihua Zhang</creatorcontrib><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><title>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific</title><addtitle>TDC</addtitle><description>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</description><subject>Bulk Power System</subject><subject>Computer networks</subject><subject>Filters</subject><subject>FSOM Neural Network</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Monte-Carlo Simulation</subject><subject>Neural networks</subject><subject>Organizing</subject><subject>Power system reliability</subject><subject>Power system simulation</subject><subject>Probabilistic Reliability Assessment (PRA)</subject><subject>Sampling methods</subject><subject>System States Filter</subject><subject>System testing</subject><issn>2160-8636</issn><issn>2160-8644</issn><isbn>0780391144</isbn><isbn>9780780391147</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEYhBs_EhG5m3h5_8Di291-7RGRVRMQIngm3d1WKwtr2hLCxd8uUfT0ZDKTyWQIuabYpxTz28X9sJ8i8j7lTEiVn5BOSgUmSjB2Si5RKsxyShk7-zcycUF6IXwgIhUqzSTvkK8BFDpEmJj43tZgWw8z35a6dI0L0VXwYhr3o-IeBiGYENZmE6G1cLdtVjBrd8bDfB-iWcNrcJs3KObTCTybrdfNAXHX-hXo8JeZRx1NgMI10fhwRc6tboLpHdkli2K0GD4m4-nD03AwTlyOMWFYZxJViYfRVKK2WohUWVSVLas6FZRbWWdCMcUVE2Va5XUtGNdCcmN5LrIuufmtdcaY5ad3a-33y-Nz2TdlXGAm</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yunting Song</creator><creator>Guangquan Bu</creator><creator>Ruihua Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</title><author>Yunting Song ; Guangquan Bu ; Ruihua Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-40d3708b0823170afa6628f08cfbcd2615f7d368485846b2c9dd645a675ef5963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bulk Power System</topic><topic>Computer networks</topic><topic>Filters</topic><topic>FSOM Neural Network</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Monte-Carlo Simulation</topic><topic>Neural networks</topic><topic>Organizing</topic><topic>Power system reliability</topic><topic>Power system simulation</topic><topic>Probabilistic Reliability Assessment (PRA)</topic><topic>Sampling methods</topic><topic>System States Filter</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunting Song</creatorcontrib><creatorcontrib>Guangquan Bu</creatorcontrib><creatorcontrib>Ruihua Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunting Song</au><au>Guangquan Bu</au><au>Ruihua Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters</atitle><btitle>2005 IEEE/PES Transmission &amp; Distribution Conference &amp; Exposition: Asia and Pacific</btitle><stitle>TDC</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2160-8636</issn><eissn>2160-8644</eissn><isbn>0780391144</isbn><isbn>9780780391147</isbn><abstract>For solving the problem that Monte-Carlo sampling technique normally used in power system probabilistic simulation has low efficiency, this paper proposes a fast method using fuzzy self organizing map (FSOM) neural network as system states filter to evaluate the reliability of bulk power system for the first time. SOM is especially appropriate to estimate the reliability of power system because it's training time shorter than other neural network. Invalid system states can be filtered by fuzzy SOM neural network, it reduces significantly the number of system states should be evaluated. The new method of FSOM neural network combined with sequential Monte-Carlo simulation results in a significant reduction in the computational effort required to compute complex power system reliability indices. Case study of the IEEE-RTS test system and a practical large-scale system are presented to demonstrate the effectiveness and feasibility of the developed algorithm</abstract><pub>IEEE</pub><doi>10.1109/TDC.2005.1546789</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-8636
ispartof 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, p.1-6
issn 2160-8636
2160-8644
language eng
recordid cdi_ieee_primary_1546789
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bulk Power System
Computer networks
Filters
FSOM Neural Network
Fuzzy neural networks
Fuzzy systems
Monte-Carlo Simulation
Neural networks
Organizing
Power system reliability
Power system simulation
Probabilistic Reliability Assessment (PRA)
Sampling methods
System States Filter
System testing
title A Fast Method for Probabilistic Reliability Assessment of Bulk Power System Using FSOM Neural Network as System States Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fast%20Method%20for%20Probabilistic%20Reliability%20Assessment%20of%20Bulk%20Power%20System%20Using%20FSOM%20Neural%20Network%20as%20System%20States%20Filters&rft.btitle=2005%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20&%20Exposition:%20Asia%20and%20Pacific&rft.au=Yunting%20Song&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2160-8636&rft.eissn=2160-8644&rft.isbn=0780391144&rft.isbn_list=9780780391147&rft_id=info:doi/10.1109/TDC.2005.1546789&rft_dat=%3Cieee_6IE%3E1546789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1546789&rfr_iscdi=true