A VQ-based approach to thermal image analysis for printed circuit boards diagnosis

This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2005-12, Vol.54 (6), p.2381-2388
Hauptverfasser: Huang, S.-Y., Mao, C.-W., Cheng, K.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2388
container_issue 6
container_start_page 2381
container_title IEEE transactions on instrumentation and measurement
container_volume 54
creator Huang, S.-Y.
Mao, C.-W.
Cheng, K.-S.
description This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.
doi_str_mv 10.1109/TIM.2005.858546
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1542539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1542539</ieee_id><sourcerecordid>2350591821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</originalsourceid><addsrcrecordid>eNp90T1Pw0AMBuATAolSmBlYTgwwpZzvcl8jqvioVIRAwBo5iQNBaVPu0qH_nquKhMTA5OWxZftl7BTEBED4q5fZw0QKoSdOO52bPTYCrW3mjZH7bCQEuMzn2hyyoxg_hRDW5HbEnq_521NWYqSa42oVeqw--NDz4YPCAjveLvCdOC6x28Q28qYPfBXa5ZB41YZq3Q687DHUkdctvi_7hI7ZQYNdpJOfOmavtzcv0_ts_ng3m17Ps0ppGLJSSiMbhd45yI12tZLgUNZKo6l9CaTBWIKKECyU1pCwHrEWFQmvVUNqzC53c9PWX2uKQ7FoY0Vdh0vq17Fw3oBTIGWSF_9K6UBoI1yC53_gZ78O6fg0zVhlnDVbdLVDVehjDNQU6SMLDJsCRLGNokhRFNsoil0UqeNs19ES0a_WudTKq28RC4OY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867368768</pqid></control><display><type>article</type><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</creator><creatorcontrib>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</creatorcontrib><description>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2005.858546</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blocking ; Boards ; Circuit boards ; Diagnosis ; Electrical fault detection ; Feature extraction ; Gold ; Hardware ; Hopfield neural network ; Image analysis ; Image coding ; Image generation ; printed circuit board (PCB) ; Printed circuit boards ; Printed circuits ; Studies ; Testing ; Thermal degradation ; thermal image ; vector quantization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2005-12, Vol.54 (6), p.2381-2388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</citedby><cites>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1542539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1542539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, S.-Y.</creatorcontrib><creatorcontrib>Mao, C.-W.</creatorcontrib><creatorcontrib>Cheng, K.-S.</creatorcontrib><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</description><subject>Blocking</subject><subject>Boards</subject><subject>Circuit boards</subject><subject>Diagnosis</subject><subject>Electrical fault detection</subject><subject>Feature extraction</subject><subject>Gold</subject><subject>Hardware</subject><subject>Hopfield neural network</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Image generation</subject><subject>printed circuit board (PCB)</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>Studies</subject><subject>Testing</subject><subject>Thermal degradation</subject><subject>thermal image</subject><subject>vector quantization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90T1Pw0AMBuATAolSmBlYTgwwpZzvcl8jqvioVIRAwBo5iQNBaVPu0qH_nquKhMTA5OWxZftl7BTEBED4q5fZw0QKoSdOO52bPTYCrW3mjZH7bCQEuMzn2hyyoxg_hRDW5HbEnq_521NWYqSa42oVeqw--NDz4YPCAjveLvCdOC6x28Q28qYPfBXa5ZB41YZq3Q687DHUkdctvi_7hI7ZQYNdpJOfOmavtzcv0_ts_ng3m17Ps0ppGLJSSiMbhd45yI12tZLgUNZKo6l9CaTBWIKKECyU1pCwHrEWFQmvVUNqzC53c9PWX2uKQ7FoY0Vdh0vq17Fw3oBTIGWSF_9K6UBoI1yC53_gZ78O6fg0zVhlnDVbdLVDVehjDNQU6SMLDJsCRLGNokhRFNsoil0UqeNs19ES0a_WudTKq28RC4OY</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Huang, S.-Y.</creator><creator>Mao, C.-W.</creator><creator>Cheng, K.-S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><author>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blocking</topic><topic>Boards</topic><topic>Circuit boards</topic><topic>Diagnosis</topic><topic>Electrical fault detection</topic><topic>Feature extraction</topic><topic>Gold</topic><topic>Hardware</topic><topic>Hopfield neural network</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Image generation</topic><topic>printed circuit board (PCB)</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>Studies</topic><topic>Testing</topic><topic>Thermal degradation</topic><topic>thermal image</topic><topic>vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, S.-Y.</creatorcontrib><creatorcontrib>Mao, C.-W.</creatorcontrib><creatorcontrib>Cheng, K.-S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, S.-Y.</au><au>Mao, C.-W.</au><au>Cheng, K.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>54</volume><issue>6</issue><spage>2381</spage><epage>2388</epage><pages>2381-2388</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2005.858546</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2005-12, Vol.54 (6), p.2381-2388
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_1542539
source IEEE Electronic Library (IEL)
subjects Blocking
Boards
Circuit boards
Diagnosis
Electrical fault detection
Feature extraction
Gold
Hardware
Hopfield neural network
Image analysis
Image coding
Image generation
printed circuit board (PCB)
Printed circuit boards
Printed circuits
Studies
Testing
Thermal degradation
thermal image
vector quantization
title A VQ-based approach to thermal image analysis for printed circuit boards diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20VQ-based%20approach%20to%20thermal%20image%20analysis%20for%20printed%20circuit%20boards%20diagnosis&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Huang,%20S.-Y.&rft.date=2005-12-01&rft.volume=54&rft.issue=6&rft.spage=2381&rft.epage=2388&rft.pages=2381-2388&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2005.858546&rft_dat=%3Cproquest_RIE%3E2350591821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867368768&rft_id=info:pmid/&rft_ieee_id=1542539&rfr_iscdi=true