A VQ-based approach to thermal image analysis for printed circuit boards diagnosis
This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2005-12, Vol.54 (6), p.2381-2388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2388 |
---|---|
container_issue | 6 |
container_start_page | 2381 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 54 |
creator | Huang, S.-Y. Mao, C.-W. Cheng, K.-S. |
description | This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time. |
doi_str_mv | 10.1109/TIM.2005.858546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1542539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1542539</ieee_id><sourcerecordid>2350591821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</originalsourceid><addsrcrecordid>eNp90T1Pw0AMBuATAolSmBlYTgwwpZzvcl8jqvioVIRAwBo5iQNBaVPu0qH_nquKhMTA5OWxZftl7BTEBED4q5fZw0QKoSdOO52bPTYCrW3mjZH7bCQEuMzn2hyyoxg_hRDW5HbEnq_521NWYqSa42oVeqw--NDz4YPCAjveLvCdOC6x28Q28qYPfBXa5ZB41YZq3Q687DHUkdctvi_7hI7ZQYNdpJOfOmavtzcv0_ts_ng3m17Ps0ppGLJSSiMbhd45yI12tZLgUNZKo6l9CaTBWIKKECyU1pCwHrEWFQmvVUNqzC53c9PWX2uKQ7FoY0Vdh0vq17Fw3oBTIGWSF_9K6UBoI1yC53_gZ78O6fg0zVhlnDVbdLVDVehjDNQU6SMLDJsCRLGNokhRFNsoil0UqeNs19ES0a_WudTKq28RC4OY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867368768</pqid></control><display><type>article</type><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</creator><creatorcontrib>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</creatorcontrib><description>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2005.858546</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blocking ; Boards ; Circuit boards ; Diagnosis ; Electrical fault detection ; Feature extraction ; Gold ; Hardware ; Hopfield neural network ; Image analysis ; Image coding ; Image generation ; printed circuit board (PCB) ; Printed circuit boards ; Printed circuits ; Studies ; Testing ; Thermal degradation ; thermal image ; vector quantization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2005-12, Vol.54 (6), p.2381-2388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</citedby><cites>FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1542539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1542539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, S.-Y.</creatorcontrib><creatorcontrib>Mao, C.-W.</creatorcontrib><creatorcontrib>Cheng, K.-S.</creatorcontrib><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</description><subject>Blocking</subject><subject>Boards</subject><subject>Circuit boards</subject><subject>Diagnosis</subject><subject>Electrical fault detection</subject><subject>Feature extraction</subject><subject>Gold</subject><subject>Hardware</subject><subject>Hopfield neural network</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Image generation</subject><subject>printed circuit board (PCB)</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>Studies</subject><subject>Testing</subject><subject>Thermal degradation</subject><subject>thermal image</subject><subject>vector quantization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90T1Pw0AMBuATAolSmBlYTgwwpZzvcl8jqvioVIRAwBo5iQNBaVPu0qH_nquKhMTA5OWxZftl7BTEBED4q5fZw0QKoSdOO52bPTYCrW3mjZH7bCQEuMzn2hyyoxg_hRDW5HbEnq_521NWYqSa42oVeqw--NDz4YPCAjveLvCdOC6x28Q28qYPfBXa5ZB41YZq3Q687DHUkdctvi_7hI7ZQYNdpJOfOmavtzcv0_ts_ng3m17Ps0ppGLJSSiMbhd45yI12tZLgUNZKo6l9CaTBWIKKECyU1pCwHrEWFQmvVUNqzC53c9PWX2uKQ7FoY0Vdh0vq17Fw3oBTIGWSF_9K6UBoI1yC53_gZ78O6fg0zVhlnDVbdLVDVehjDNQU6SMLDJsCRLGNokhRFNsoil0UqeNs19ES0a_WudTKq28RC4OY</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Huang, S.-Y.</creator><creator>Mao, C.-W.</creator><creator>Cheng, K.-S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</title><author>Huang, S.-Y. ; Mao, C.-W. ; Cheng, K.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b2262f3a98814658d3218a2d35a6d9b1e5167e1cea171b76e079aad0ce0953fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blocking</topic><topic>Boards</topic><topic>Circuit boards</topic><topic>Diagnosis</topic><topic>Electrical fault detection</topic><topic>Feature extraction</topic><topic>Gold</topic><topic>Hardware</topic><topic>Hopfield neural network</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Image generation</topic><topic>printed circuit board (PCB)</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>Studies</topic><topic>Testing</topic><topic>Thermal degradation</topic><topic>thermal image</topic><topic>vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, S.-Y.</creatorcontrib><creatorcontrib>Mao, C.-W.</creatorcontrib><creatorcontrib>Cheng, K.-S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, S.-Y.</au><au>Mao, C.-W.</au><au>Cheng, K.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A VQ-based approach to thermal image analysis for printed circuit boards diagnosis</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>54</volume><issue>6</issue><spage>2381</spage><epage>2388</epage><pages>2381-2388</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper proposes a novel method to analyze the thermal image of a printed circuit board (PCB) for fault detection. In this method, a gold thermal image is first generated from the thermal images of the PCB in normal operation, and then compressed into a codebook with a certain number of codewords. Each codeword represents a block of image size four by four. Each block in the thermal image for the board under test (BUT) is then encoded in the same way. The codewords in the codebook are arranged in ascending order with respect to their mean values. Any abnormal functional block in BUT can be identified by comparing the codeword index with that of the corresponding block in the gold thermal image. The memory size for storing the templates for comparison is, thus, significantly reduced without diagnosis performance degradation. Also, there is not a necessity for feature extraction such as the feature-based diagnostic methods. In addition, an adaptive threshold criterion is proposed to improve the detection sensitivity. From the experimental results, this proposed method is demonstrated to be very effective in abnormal functional block identification for PCBs based on the thermal image. Furthermore, this method is highly modularized for hardware implementation and parallel realization to speed up the processing time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2005.858546</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2005-12, Vol.54 (6), p.2381-2388 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_1542539 |
source | IEEE Electronic Library (IEL) |
subjects | Blocking Boards Circuit boards Diagnosis Electrical fault detection Feature extraction Gold Hardware Hopfield neural network Image analysis Image coding Image generation printed circuit board (PCB) Printed circuit boards Printed circuits Studies Testing Thermal degradation thermal image vector quantization |
title | A VQ-based approach to thermal image analysis for printed circuit boards diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20VQ-based%20approach%20to%20thermal%20image%20analysis%20for%20printed%20circuit%20boards%20diagnosis&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Huang,%20S.-Y.&rft.date=2005-12-01&rft.volume=54&rft.issue=6&rft.spage=2381&rft.epage=2388&rft.pages=2381-2388&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2005.858546&rft_dat=%3Cproquest_RIE%3E2350591821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867368768&rft_id=info:pmid/&rft_ieee_id=1542539&rfr_iscdi=true |