Evaluation of features detectors and descriptors based on 3D objects

We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moreels, P., Perona, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807 Vol. 1
container_issue
container_start_page 800
container_title
container_volume 1
creator Moreels, P.
Perona, P.
description We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collect a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for lighting changes and scale changes. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25-30/spl deg/.
doi_str_mv 10.1109/ICCV.2005.89
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1541335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1541335</ieee_id><sourcerecordid>1541335</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-797bfe885c39ac7d21847514c1e551c8bf218667068a2fad50e1527cd2e0d3cf3</originalsourceid><addsrcrecordid>eNotjM1KAzEURoM_4LS6c-cmLzD1JnfuJFnKtGqh4EbFXckkNzCldspkKvj2Durq43wcjhC3ChZKgbtfN837QgPQwrozUWi0UBqC6lzMwNSONGL1cSEKRQQlVc5diVnOOwB02taFWK6-_P7kx64_yD7JxH48DZxl5JHD2A9Z-kOcKIehO_5y6zNHOem4lH27m6x8LS6T32e--d-5eHtcvTbP5eblad08bMpOKxxL40yb2FoK6HwwUStbGVJVUEykgm3T9NS1gdp6nXwkYEXahKgZIoaEc3H31-2YeXscuk8_fG8VVQqR8AeIfkr4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of features detectors and descriptors based on 3D objects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moreels, P. ; Perona, P.</creator><creatorcontrib>Moreels, P. ; Perona, P.</creatorcontrib><description>We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collect a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for lighting changes and scale changes. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25-30/spl deg/.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 076952334X</identifier><identifier>ISBN: 9780769523347</identifier><identifier>EISSN: 2380-7504</identifier><identifier>DOI: 10.1109/ICCV.2005.89</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Detectors ; Frequency ; Layout ; Object detection ; Object recognition ; Robustness ; Shape ; Simultaneous localization and mapping ; Stereo vision</subject><ispartof>Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005, Vol.1, p.800-807 Vol. 1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1541335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1541335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moreels, P.</creatorcontrib><creatorcontrib>Perona, P.</creatorcontrib><title>Evaluation of features detectors and descriptors based on 3D objects</title><title>Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1</title><addtitle>ICCV</addtitle><description>We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collect a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for lighting changes and scale changes. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25-30/spl deg/.</description><subject>Computer vision</subject><subject>Detectors</subject><subject>Frequency</subject><subject>Layout</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Shape</subject><subject>Simultaneous localization and mapping</subject><subject>Stereo vision</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>076952334X</isbn><isbn>9780769523347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KAzEURoM_4LS6c-cmLzD1JnfuJFnKtGqh4EbFXckkNzCldspkKvj2Durq43wcjhC3ChZKgbtfN837QgPQwrozUWi0UBqC6lzMwNSONGL1cSEKRQQlVc5diVnOOwB02taFWK6-_P7kx64_yD7JxH48DZxl5JHD2A9Z-kOcKIehO_5y6zNHOem4lH27m6x8LS6T32e--d-5eHtcvTbP5eblad08bMpOKxxL40yb2FoK6HwwUStbGVJVUEykgm3T9NS1gdp6nXwkYEXahKgZIoaEc3H31-2YeXscuk8_fG8VVQqR8AeIfkr4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Moreels, P.</creator><creator>Perona, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Evaluation of features detectors and descriptors based on 3D objects</title><author>Moreels, P. ; Perona, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-797bfe885c39ac7d21847514c1e551c8bf218667068a2fad50e1527cd2e0d3cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer vision</topic><topic>Detectors</topic><topic>Frequency</topic><topic>Layout</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Shape</topic><topic>Simultaneous localization and mapping</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Moreels, P.</creatorcontrib><creatorcontrib>Perona, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moreels, P.</au><au>Perona, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of features detectors and descriptors based on 3D objects</atitle><btitle>Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1</btitle><stitle>ICCV</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>800</spage><epage>807 Vol. 1</epage><pages>800-807 Vol. 1</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>076952334X</isbn><isbn>9780769523347</isbn><abstract>We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collect a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for lighting changes and scale changes. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25-30/spl deg/.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2005.89</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005, Vol.1, p.800-807 Vol. 1
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_1541335
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Detectors
Frequency
Layout
Object detection
Object recognition
Robustness
Shape
Simultaneous localization and mapping
Stereo vision
title Evaluation of features detectors and descriptors based on 3D objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20features%20detectors%20and%20descriptors%20based%20on%203D%20objects&rft.btitle=Tenth%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV'05)%20Volume%201&rft.au=Moreels,%20P.&rft.date=2005&rft.volume=1&rft.spage=800&rft.epage=807%20Vol.%201&rft.pages=800-807%20Vol.%201&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=076952334X&rft.isbn_list=9780769523347&rft_id=info:doi/10.1109/ICCV.2005.89&rft_dat=%3Cieee_6IE%3E1541335%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1541335&rfr_iscdi=true