Parallel multiple search
Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 114 |
container_title | |
container_volume | |
creator | Zhaofang Wen |
description | Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p |
doi_str_mv | 10.1109/IPPS.1991.153765 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_153765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>153765</ieee_id><sourcerecordid>153765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-16f36b551b927e015722baaa678fc002a9350d0d01de094cc2ccff43f2c6eb063</originalsourceid><addsrcrecordid>eNotjk1rAjEQhgOlYKvexZN_YLcziTNJjkX6IQgu6F1m4wRXIsiuPfTfV7Dvc3huD68xM4QaEeLbuml2NcaINZLzTE_mFQIGjsgeRmY6DGe4jygwwYuZNdJLKVoWl59y665FF4NKn04T85ylDDr999jsPz_2q-9qs_1ar943VRfirULOjlsibKP1Ckje2lZE2IecAKxER3C8g0eFuEzJppTz0mWbWFtgNzbzR7ZT1cO17y7S_x4e190fM_s4UQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel multiple search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhaofang Wen</creator><creatorcontrib>Zhaofang Wen</creatorcontrib><description>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p<or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m<or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m>n. The second algorithm is optimal.< ></description><identifier>ISBN: 0818691670</identifier><identifier>ISBN: 9780818691676</identifier><identifier>DOI: 10.1109/IPPS.1991.153765</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Computational modeling ; Computer science ; Concurrent computing ; Information retrieval ; Merging ; Office automation ; Parallel algorithms ; Phase change random access memory ; Search problems</subject><ispartof>[1991] Proceedings. The Fifth International Parallel Processing Symposium, 1991, p.114-119</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/153765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/153765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhaofang Wen</creatorcontrib><title>Parallel multiple search</title><title>[1991] Proceedings. The Fifth International Parallel Processing Symposium</title><addtitle>IPPS</addtitle><description>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p<or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m<or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m>n. The second algorithm is optimal.< ></description><subject>Computational modeling</subject><subject>Computer science</subject><subject>Concurrent computing</subject><subject>Information retrieval</subject><subject>Merging</subject><subject>Office automation</subject><subject>Parallel algorithms</subject><subject>Phase change random access memory</subject><subject>Search problems</subject><isbn>0818691670</isbn><isbn>9780818691676</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1rAjEQhgOlYKvexZN_YLcziTNJjkX6IQgu6F1m4wRXIsiuPfTfV7Dvc3huD68xM4QaEeLbuml2NcaINZLzTE_mFQIGjsgeRmY6DGe4jygwwYuZNdJLKVoWl59y665FF4NKn04T85ylDDr999jsPz_2q-9qs_1ar943VRfirULOjlsibKP1Ckje2lZE2IecAKxER3C8g0eFuEzJppTz0mWbWFtgNzbzR7ZT1cO17y7S_x4e190fM_s4UQ</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Zhaofang Wen</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Parallel multiple search</title><author>Zhaofang Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-16f36b551b927e015722baaa678fc002a9350d0d01de094cc2ccff43f2c6eb063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Computational modeling</topic><topic>Computer science</topic><topic>Concurrent computing</topic><topic>Information retrieval</topic><topic>Merging</topic><topic>Office automation</topic><topic>Parallel algorithms</topic><topic>Phase change random access memory</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhaofang Wen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhaofang Wen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel multiple search</atitle><btitle>[1991] Proceedings. The Fifth International Parallel Processing Symposium</btitle><stitle>IPPS</stitle><date>1991</date><risdate>1991</risdate><spage>114</spage><epage>119</epage><pages>114-119</pages><isbn>0818691670</isbn><isbn>9780818691676</isbn><abstract>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p<or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m<or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m>n. The second algorithm is optimal.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/IPPS.1991.153765</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0818691670 |
ispartof | [1991] Proceedings. The Fifth International Parallel Processing Symposium, 1991, p.114-119 |
issn | |
language | eng |
recordid | cdi_ieee_primary_153765 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Computer science Concurrent computing Information retrieval Merging Office automation Parallel algorithms Phase change random access memory Search problems |
title | Parallel multiple search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20multiple%20search&rft.btitle=%5B1991%5D%20Proceedings.%20The%20Fifth%20International%20Parallel%20Processing%20Symposium&rft.au=Zhaofang%20Wen&rft.date=1991&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.isbn=0818691670&rft.isbn_list=9780818691676&rft_id=info:doi/10.1109/IPPS.1991.153765&rft_dat=%3Cieee_6IE%3E153765%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=153765&rfr_iscdi=true |