Parallel multiple search

Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zhaofang Wen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 114
container_title
container_volume
creator Zhaofang Wen
description Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p
doi_str_mv 10.1109/IPPS.1991.153765
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_153765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>153765</ieee_id><sourcerecordid>153765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-16f36b551b927e015722baaa678fc002a9350d0d01de094cc2ccff43f2c6eb063</originalsourceid><addsrcrecordid>eNotjk1rAjEQhgOlYKvexZN_YLcziTNJjkX6IQgu6F1m4wRXIsiuPfTfV7Dvc3huD68xM4QaEeLbuml2NcaINZLzTE_mFQIGjsgeRmY6DGe4jygwwYuZNdJLKVoWl59y665FF4NKn04T85ylDDr999jsPz_2q-9qs_1ar943VRfirULOjlsibKP1Ckje2lZE2IecAKxER3C8g0eFuEzJppTz0mWbWFtgNzbzR7ZT1cO17y7S_x4e190fM_s4UQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel multiple search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhaofang Wen</creator><creatorcontrib>Zhaofang Wen</creatorcontrib><description>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p&lt;or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m&lt;or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m&gt;n. The second algorithm is optimal.&lt; &gt;</description><identifier>ISBN: 0818691670</identifier><identifier>ISBN: 9780818691676</identifier><identifier>DOI: 10.1109/IPPS.1991.153765</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Computational modeling ; Computer science ; Concurrent computing ; Information retrieval ; Merging ; Office automation ; Parallel algorithms ; Phase change random access memory ; Search problems</subject><ispartof>[1991] Proceedings. The Fifth International Parallel Processing Symposium, 1991, p.114-119</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/153765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/153765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhaofang Wen</creatorcontrib><title>Parallel multiple search</title><title>[1991] Proceedings. The Fifth International Parallel Processing Symposium</title><addtitle>IPPS</addtitle><description>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p&lt;or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m&lt;or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m&gt;n. The second algorithm is optimal.&lt; &gt;</description><subject>Computational modeling</subject><subject>Computer science</subject><subject>Concurrent computing</subject><subject>Information retrieval</subject><subject>Merging</subject><subject>Office automation</subject><subject>Parallel algorithms</subject><subject>Phase change random access memory</subject><subject>Search problems</subject><isbn>0818691670</isbn><isbn>9780818691676</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1rAjEQhgOlYKvexZN_YLcziTNJjkX6IQgu6F1m4wRXIsiuPfTfV7Dvc3huD68xM4QaEeLbuml2NcaINZLzTE_mFQIGjsgeRmY6DGe4jygwwYuZNdJLKVoWl59y665FF4NKn04T85ylDDr999jsPz_2q-9qs_1ar943VRfirULOjlsibKP1Ckje2lZE2IecAKxER3C8g0eFuEzJppTz0mWbWFtgNzbzR7ZT1cO17y7S_x4e190fM_s4UQ</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Zhaofang Wen</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Parallel multiple search</title><author>Zhaofang Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-16f36b551b927e015722baaa678fc002a9350d0d01de094cc2ccff43f2c6eb063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Computational modeling</topic><topic>Computer science</topic><topic>Concurrent computing</topic><topic>Information retrieval</topic><topic>Merging</topic><topic>Office automation</topic><topic>Parallel algorithms</topic><topic>Phase change random access memory</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhaofang Wen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhaofang Wen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel multiple search</atitle><btitle>[1991] Proceedings. The Fifth International Parallel Processing Symposium</btitle><stitle>IPPS</stitle><date>1991</date><risdate>1991</risdate><spage>114</spage><epage>119</epage><pages>114-119</pages><isbn>0818691670</isbn><isbn>9780818691676</isbn><abstract>Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. The paper presents two parallel algorithms for the problem. The first algorithm requires O(logm+logn) time using n processors on an EREW PRAM. On an EREW PRAM with p (p&lt;or=min(m, n)) processors, the second algorithm runs in O(logn+/sub p///sup n/) time when m&lt;or=n, or in O(logm+/sub p///sup n/log/sub n///sup 2m/) time when m&gt;n. The second algorithm is optimal.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/IPPS.1991.153765</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818691670
ispartof [1991] Proceedings. The Fifth International Parallel Processing Symposium, 1991, p.114-119
issn
language eng
recordid cdi_ieee_primary_153765
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Computer science
Concurrent computing
Information retrieval
Merging
Office automation
Parallel algorithms
Phase change random access memory
Search problems
title Parallel multiple search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20multiple%20search&rft.btitle=%5B1991%5D%20Proceedings.%20The%20Fifth%20International%20Parallel%20Processing%20Symposium&rft.au=Zhaofang%20Wen&rft.date=1991&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.isbn=0818691670&rft.isbn_list=9780818691676&rft_id=info:doi/10.1109/IPPS.1991.153765&rft_dat=%3Cieee_6IE%3E153765%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=153765&rfr_iscdi=true