Null space-based LDA with weighted dual personal subspaces for face recognition

Linear discriminant analysis (LDA) is popular feature extraction technique for face recognition. However, it often suffers the small sample size problem when dealing with the high dimensional face data. Moreover, the within-class and between-class scatter matrix used in LDA have low effective when d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xipeng Qiu, Lide Wu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue
container_start_page II
container_title
container_volume 2
creator Xipeng Qiu
Lide Wu
description Linear discriminant analysis (LDA) is popular feature extraction technique for face recognition. However, it often suffers the small sample size problem when dealing with the high dimensional face data. Moreover, the within-class and between-class scatter matrix used in LDA have low effective when dealing with face data of non-Gaussian density. In this paper, we propose a new method for face recognition. We first calculate the weighted dual personal subspaces to replace the within and between class matrix, then null space-based LDA is performed. The experiments show our method outperforms existing LDA and state-of-art face recognition approaches.
doi_str_mv 10.1109/ICIP.2005.1530210
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1530210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1530210</ieee_id><sourcerecordid>1530210</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ccee6830d553550b928cddbe1ebdc7d02856066a4c419c80a59ebb5fbe4ecc4c3</originalsourceid><addsrcrecordid>eNotUMlqwzAUFF2gIfUHlF70A06flmdLx5BugdD0kHvQ8pyouHGwHEL_vqbNMDDDMMxhGHsQMBMC7NNysfycSQCcCVQgBVyxiVRGlAa1vWaFrQ2MVFYojTdsIlDKUhsDd6zI-QtGaNRQ1RO2_ji1Lc9HF6j0LlPkq-c5P6dhz8-UdvthTOLJtfxIfe4Oo8kn_1fPvOl63oyO9xS63SENqTvcs9vGtZmKi07Z5vVls3gvV-u35WK-KpOFoQyBqDIKIqJCBG-lCTF6EuRjqCNIgxVUldNBCxsMOLTkPTaeNIWgg5qyx__ZRETbY5--Xf-zvbyhfgGGjVHz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Null space-based LDA with weighted dual personal subspaces for face recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xipeng Qiu ; Lide Wu</creator><creatorcontrib>Xipeng Qiu ; Lide Wu</creatorcontrib><description>Linear discriminant analysis (LDA) is popular feature extraction technique for face recognition. However, it often suffers the small sample size problem when dealing with the high dimensional face data. Moreover, the within-class and between-class scatter matrix used in LDA have low effective when dealing with face data of non-Gaussian density. In this paper, we propose a new method for face recognition. We first calculate the weighted dual personal subspaces to replace the within and between class matrix, then null space-based LDA is performed. The experiments show our method outperforms existing LDA and state-of-art face recognition approaches.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780391345</identifier><identifier>ISBN: 0780391349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2005.1530210</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Covariance matrix ; Face recognition ; Feature extraction ; Linear discriminant analysis ; Null space ; Principal component analysis ; Scattering ; Training data ; Vectors</subject><ispartof>IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-934</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1530210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1530210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xipeng Qiu</creatorcontrib><creatorcontrib>Lide Wu</creatorcontrib><title>Null space-based LDA with weighted dual personal subspaces for face recognition</title><title>IEEE International Conference on Image Processing 2005</title><addtitle>ICIP</addtitle><description>Linear discriminant analysis (LDA) is popular feature extraction technique for face recognition. However, it often suffers the small sample size problem when dealing with the high dimensional face data. Moreover, the within-class and between-class scatter matrix used in LDA have low effective when dealing with face data of non-Gaussian density. In this paper, we propose a new method for face recognition. We first calculate the weighted dual personal subspaces to replace the within and between class matrix, then null space-based LDA is performed. The experiments show our method outperforms existing LDA and state-of-art face recognition approaches.</description><subject>Computer science</subject><subject>Covariance matrix</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Linear discriminant analysis</subject><subject>Null space</subject><subject>Principal component analysis</subject><subject>Scattering</subject><subject>Training data</subject><subject>Vectors</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780391345</isbn><isbn>0780391349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlqwzAUFF2gIfUHlF70A06flmdLx5BugdD0kHvQ8pyouHGwHEL_vqbNMDDDMMxhGHsQMBMC7NNysfycSQCcCVQgBVyxiVRGlAa1vWaFrQ2MVFYojTdsIlDKUhsDd6zI-QtGaNRQ1RO2_ji1Lc9HF6j0LlPkq-c5P6dhz8-UdvthTOLJtfxIfe4Oo8kn_1fPvOl63oyO9xS63SENqTvcs9vGtZmKi07Z5vVls3gvV-u35WK-KpOFoQyBqDIKIqJCBG-lCTF6EuRjqCNIgxVUldNBCxsMOLTkPTaeNIWgg5qyx__ZRETbY5--Xf-zvbyhfgGGjVHz</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Xipeng Qiu</creator><creator>Lide Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Null space-based LDA with weighted dual personal subspaces for face recognition</title><author>Xipeng Qiu ; Lide Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ccee6830d553550b928cddbe1ebdc7d02856066a4c419c80a59ebb5fbe4ecc4c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer science</topic><topic>Covariance matrix</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Linear discriminant analysis</topic><topic>Null space</topic><topic>Principal component analysis</topic><topic>Scattering</topic><topic>Training data</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Xipeng Qiu</creatorcontrib><creatorcontrib>Lide Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xipeng Qiu</au><au>Lide Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Null space-based LDA with weighted dual personal subspaces for face recognition</atitle><btitle>IEEE International Conference on Image Processing 2005</btitle><stitle>ICIP</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>II</spage><epage>934</epage><pages>II-934</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780391345</isbn><isbn>0780391349</isbn><abstract>Linear discriminant analysis (LDA) is popular feature extraction technique for face recognition. However, it often suffers the small sample size problem when dealing with the high dimensional face data. Moreover, the within-class and between-class scatter matrix used in LDA have low effective when dealing with face data of non-Gaussian density. In this paper, we propose a new method for face recognition. We first calculate the weighted dual personal subspaces to replace the within and between class matrix, then null space-based LDA is performed. The experiments show our method outperforms existing LDA and state-of-art face recognition approaches.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2005.1530210</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-934
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_1530210
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Covariance matrix
Face recognition
Feature extraction
Linear discriminant analysis
Null space
Principal component analysis
Scattering
Training data
Vectors
title Null space-based LDA with weighted dual personal subspaces for face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Null%20space-based%20LDA%20with%20weighted%20dual%20personal%20subspaces%20for%20face%20recognition&rft.btitle=IEEE%20International%20Conference%20on%20Image%20Processing%202005&rft.au=Xipeng%20Qiu&rft.date=2005&rft.volume=2&rft.spage=II&rft.epage=934&rft.pages=II-934&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780391345&rft.isbn_list=0780391349&rft_id=info:doi/10.1109/ICIP.2005.1530210&rft_dat=%3Cieee_6IE%3E1530210%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1530210&rfr_iscdi=true