Static human body postures recognition in video sequences using the belief theory
This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmenta...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | II |
container_title | |
container_volume | 2 |
creator | Girondel, V. Bonnaud, L. Caplier, A. Rombaut, M. |
description | This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing. |
doi_str_mv | 10.1109/ICIP.2005.1529987 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1529987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1529987</ieee_id><sourcerecordid>1529987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-65f8d733303534b549d44cf7704249fb8c4d5801a61f6461d23fe33e3752fb023</originalsourceid><addsrcrecordid>eNotUNtKxDAUDF7AsvYDxJf8QGuSkzTJoxQvhQUV9Xlpm5PdyG67Nq3Qv7fiDgMzMIfDMITccJZzzuxdVVavuWBM5VwJa40-I4kAwzOjpD0nqdWGLQTLQaoLkixXIpPGsCuSxvjFFkglWaET8vY-1mNo6W461B1tejfTYx_HacBIB2z7bRfG0Hc0dPQnOOxpxO8Ju3aJpxi6LR13SBvcB_R_th_ma3Lp633E9KQr8vn48FE-Z-uXp6q8X2eBA-isUN44DQAMFMhmKe6kbL3WTAppfWNa6ZRhvC64L2TBnQCPAAhaCd8wASty-_83IOLmOIRDPcyb0yDwC8BKUYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Static human body postures recognition in video sequences using the belief theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</creator><creatorcontrib>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</creatorcontrib><description>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780391345</identifier><identifier>ISBN: 0780391349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2005.1529987</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arm ; Biological system modeling ; Color ; Distance measurement ; Face detection ; Human computer interaction ; Image recognition ; Skin ; Speech analysis ; Video sequences</subject><ispartof>IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-45</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1529987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,4052,4053,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1529987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Girondel, V.</creatorcontrib><creatorcontrib>Bonnaud, L.</creatorcontrib><creatorcontrib>Caplier, A.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><title>Static human body postures recognition in video sequences using the belief theory</title><title>IEEE International Conference on Image Processing 2005</title><addtitle>ICIP</addtitle><description>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</description><subject>Arm</subject><subject>Biological system modeling</subject><subject>Color</subject><subject>Distance measurement</subject><subject>Face detection</subject><subject>Human computer interaction</subject><subject>Image recognition</subject><subject>Skin</subject><subject>Speech analysis</subject><subject>Video sequences</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780391345</isbn><isbn>0780391349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKxDAUDF7AsvYDxJf8QGuSkzTJoxQvhQUV9Xlpm5PdyG67Nq3Qv7fiDgMzMIfDMITccJZzzuxdVVavuWBM5VwJa40-I4kAwzOjpD0nqdWGLQTLQaoLkixXIpPGsCuSxvjFFkglWaET8vY-1mNo6W461B1tejfTYx_HacBIB2z7bRfG0Hc0dPQnOOxpxO8Ju3aJpxi6LR13SBvcB_R_th_ma3Lp633E9KQr8vn48FE-Z-uXp6q8X2eBA-isUN44DQAMFMhmKe6kbL3WTAppfWNa6ZRhvC64L2TBnQCPAAhaCd8wASty-_83IOLmOIRDPcyb0yDwC8BKUYc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Girondel, V.</creator><creator>Bonnaud, L.</creator><creator>Caplier, A.</creator><creator>Rombaut, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Static human body postures recognition in video sequences using the belief theory</title><author>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-65f8d733303534b549d44cf7704249fb8c4d5801a61f6461d23fe33e3752fb023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arm</topic><topic>Biological system modeling</topic><topic>Color</topic><topic>Distance measurement</topic><topic>Face detection</topic><topic>Human computer interaction</topic><topic>Image recognition</topic><topic>Skin</topic><topic>Speech analysis</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Girondel, V.</creatorcontrib><creatorcontrib>Bonnaud, L.</creatorcontrib><creatorcontrib>Caplier, A.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Girondel, V.</au><au>Bonnaud, L.</au><au>Caplier, A.</au><au>Rombaut, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Static human body postures recognition in video sequences using the belief theory</atitle><btitle>IEEE International Conference on Image Processing 2005</btitle><stitle>ICIP</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>II</spage><epage>45</epage><pages>II-45</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780391345</isbn><isbn>0780391349</isbn><abstract>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2005.1529987</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-45 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_1529987 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arm Biological system modeling Color Distance measurement Face detection Human computer interaction Image recognition Skin Speech analysis Video sequences |
title | Static human body postures recognition in video sequences using the belief theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Static%20human%20body%20postures%20recognition%20in%20video%20sequences%20using%20the%20belief%20theory&rft.btitle=IEEE%20International%20Conference%20on%20Image%20Processing%202005&rft.au=Girondel,%20V.&rft.date=2005&rft.volume=2&rft.spage=II&rft.epage=45&rft.pages=II-45&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780391345&rft.isbn_list=0780391349&rft_id=info:doi/10.1109/ICIP.2005.1529987&rft_dat=%3Cieee_6IE%3E1529987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1529987&rfr_iscdi=true |