Static human body postures recognition in video sequences using the belief theory

This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Girondel, V., Bonnaud, L., Caplier, A., Rombaut, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page II
container_title
container_volume 2
creator Girondel, V.
Bonnaud, L.
Caplier, A.
Rombaut, M.
description This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.
doi_str_mv 10.1109/ICIP.2005.1529987
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1529987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1529987</ieee_id><sourcerecordid>1529987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-65f8d733303534b549d44cf7704249fb8c4d5801a61f6461d23fe33e3752fb023</originalsourceid><addsrcrecordid>eNotUNtKxDAUDF7AsvYDxJf8QGuSkzTJoxQvhQUV9Xlpm5PdyG67Nq3Qv7fiDgMzMIfDMITccJZzzuxdVVavuWBM5VwJa40-I4kAwzOjpD0nqdWGLQTLQaoLkixXIpPGsCuSxvjFFkglWaET8vY-1mNo6W461B1tejfTYx_HacBIB2z7bRfG0Hc0dPQnOOxpxO8Ju3aJpxi6LR13SBvcB_R_th_ma3Lp633E9KQr8vn48FE-Z-uXp6q8X2eBA-isUN44DQAMFMhmKe6kbL3WTAppfWNa6ZRhvC64L2TBnQCPAAhaCd8wASty-_83IOLmOIRDPcyb0yDwC8BKUYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Static human body postures recognition in video sequences using the belief theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</creator><creatorcontrib>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</creatorcontrib><description>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780391345</identifier><identifier>ISBN: 0780391349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2005.1529987</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arm ; Biological system modeling ; Color ; Distance measurement ; Face detection ; Human computer interaction ; Image recognition ; Skin ; Speech analysis ; Video sequences</subject><ispartof>IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-45</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1529987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,4052,4053,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1529987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Girondel, V.</creatorcontrib><creatorcontrib>Bonnaud, L.</creatorcontrib><creatorcontrib>Caplier, A.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><title>Static human body postures recognition in video sequences using the belief theory</title><title>IEEE International Conference on Image Processing 2005</title><addtitle>ICIP</addtitle><description>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</description><subject>Arm</subject><subject>Biological system modeling</subject><subject>Color</subject><subject>Distance measurement</subject><subject>Face detection</subject><subject>Human computer interaction</subject><subject>Image recognition</subject><subject>Skin</subject><subject>Speech analysis</subject><subject>Video sequences</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780391345</isbn><isbn>0780391349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKxDAUDF7AsvYDxJf8QGuSkzTJoxQvhQUV9Xlpm5PdyG67Nq3Qv7fiDgMzMIfDMITccJZzzuxdVVavuWBM5VwJa40-I4kAwzOjpD0nqdWGLQTLQaoLkixXIpPGsCuSxvjFFkglWaET8vY-1mNo6W461B1tejfTYx_HacBIB2z7bRfG0Hc0dPQnOOxpxO8Ju3aJpxi6LR13SBvcB_R_th_ma3Lp633E9KQr8vn48FE-Z-uXp6q8X2eBA-isUN44DQAMFMhmKe6kbL3WTAppfWNa6ZRhvC64L2TBnQCPAAhaCd8wASty-_83IOLmOIRDPcyb0yDwC8BKUYc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Girondel, V.</creator><creator>Bonnaud, L.</creator><creator>Caplier, A.</creator><creator>Rombaut, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Static human body postures recognition in video sequences using the belief theory</title><author>Girondel, V. ; Bonnaud, L. ; Caplier, A. ; Rombaut, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-65f8d733303534b549d44cf7704249fb8c4d5801a61f6461d23fe33e3752fb023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arm</topic><topic>Biological system modeling</topic><topic>Color</topic><topic>Distance measurement</topic><topic>Face detection</topic><topic>Human computer interaction</topic><topic>Image recognition</topic><topic>Skin</topic><topic>Speech analysis</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Girondel, V.</creatorcontrib><creatorcontrib>Bonnaud, L.</creatorcontrib><creatorcontrib>Caplier, A.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Girondel, V.</au><au>Bonnaud, L.</au><au>Caplier, A.</au><au>Rombaut, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Static human body postures recognition in video sequences using the belief theory</atitle><btitle>IEEE International Conference on Image Processing 2005</btitle><stitle>ICIP</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>II</spage><epage>45</epage><pages>II-45</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780391345</isbn><isbn>0780391349</isbn><abstract>This paper presents a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The recognition is based on data fusion using the belief theory. The data come from the persons 2D segmentation and from their face localization. It consists in distance measurements relative to a reference posture ("Da Vinci posture": standing, arms stretched horizontally). The segmentation is based on an adaptive background removal algorithm. The face localization process uses skin detection based on color information with an adaptive thresholding. The efficiency and the limits of the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2005.1529987</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof IEEE International Conference on Image Processing 2005, 2005, Vol.2, p.II-45
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_1529987
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arm
Biological system modeling
Color
Distance measurement
Face detection
Human computer interaction
Image recognition
Skin
Speech analysis
Video sequences
title Static human body postures recognition in video sequences using the belief theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Static%20human%20body%20postures%20recognition%20in%20video%20sequences%20using%20the%20belief%20theory&rft.btitle=IEEE%20International%20Conference%20on%20Image%20Processing%202005&rft.au=Girondel,%20V.&rft.date=2005&rft.volume=2&rft.spage=II&rft.epage=45&rft.pages=II-45&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780391345&rft.isbn_list=0780391349&rft_id=info:doi/10.1109/ICIP.2005.1529987&rft_dat=%3Cieee_6IE%3E1529987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1529987&rfr_iscdi=true