Image content annotation using Bayesian framework and complement components analysis

In this paper, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label. We then build a Bayesian model to solve the classification problem. To preserve the in-variation in the training data and reduce the noises, we also propose t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changbo Yang, Ming Dong, Fotouhi, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue
container_start_page I
container_title
container_volume 1
creator Changbo Yang
Ming Dong
Fotouhi, F.
description In this paper, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label. We then build a Bayesian model to solve the classification problem. To preserve the in-variation in the training data and reduce the noises, we also propose to estimate the class conditional probabilities in the feature subspace constructed by complement components analysis (CCA). We demonstrate the effectiveness of our approach through experiments in terms of annotation precision and recall.
doi_str_mv 10.1109/ICIP.2005.1529970
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1529970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1529970</ieee_id><sourcerecordid>1529970</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1e28658405d86c2a7480e5f5546c8763d921026d3bb60f3fb8634644636871da3</originalsourceid><addsrcrecordid>eNotkM1KxEAQhAd_wGXNA4iXvEBiz296jhp0DSzoIfdlkkyW0WSyZCKSt3cWt2iogv66D0XIA4WcUtBPVVl95gxA5lQyrQu4IhvGkWYohb4miS4Q4nBNuZA3ZBMplglEuCNJCF8QJaQAVWxIXY3maNN28ov1S2q8nxazuMmnP8H5Y_piVhuc8Wk_m9H-TvN3ZLrIj6fBjueTc5x8TCFuzLAGF-7JbW-GYJOLb0n99lqX79n-Y1eVz_vMaVgyahkqiQJkh6plphAIVvZSCtVioXinGQWmOt40CnreN6i4UEIorrCgneFb8vj_1llrD6fZjWZeD5dK-B_WHVLJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image content annotation using Bayesian framework and complement components analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changbo Yang ; Ming Dong ; Fotouhi, F.</creator><creatorcontrib>Changbo Yang ; Ming Dong ; Fotouhi, F.</creatorcontrib><description>In this paper, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label. We then build a Bayesian model to solve the classification problem. To preserve the in-variation in the training data and reduce the noises, we also propose to estimate the class conditional probabilities in the feature subspace constructed by complement components analysis (CCA). We demonstrate the effectiveness of our approach through experiments in terms of annotation precision and recall.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780391345</identifier><identifier>ISBN: 0780391349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2005.1529970</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Digital images ; Feature extraction ; Image analysis ; Image classification ; Image databases ; Image retrieval ; Indexing ; Noise reduction ; Training data</subject><ispartof>IEEE International Conference on Image Processing 2005, 2005, Vol.1, p.I-1193</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1529970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1529970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changbo Yang</creatorcontrib><creatorcontrib>Ming Dong</creatorcontrib><creatorcontrib>Fotouhi, F.</creatorcontrib><title>Image content annotation using Bayesian framework and complement components analysis</title><title>IEEE International Conference on Image Processing 2005</title><addtitle>ICIP</addtitle><description>In this paper, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label. We then build a Bayesian model to solve the classification problem. To preserve the in-variation in the training data and reduce the noises, we also propose to estimate the class conditional probabilities in the feature subspace constructed by complement components analysis (CCA). We demonstrate the effectiveness of our approach through experiments in terms of annotation precision and recall.</description><subject>Bayesian methods</subject><subject>Digital images</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Indexing</subject><subject>Noise reduction</subject><subject>Training data</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780391345</isbn><isbn>0780391349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1KxEAQhAd_wGXNA4iXvEBiz296jhp0DSzoIfdlkkyW0WSyZCKSt3cWt2iogv66D0XIA4WcUtBPVVl95gxA5lQyrQu4IhvGkWYohb4miS4Q4nBNuZA3ZBMplglEuCNJCF8QJaQAVWxIXY3maNN28ov1S2q8nxazuMmnP8H5Y_piVhuc8Wk_m9H-TvN3ZLrIj6fBjueTc5x8TCFuzLAGF-7JbW-GYJOLb0n99lqX79n-Y1eVz_vMaVgyahkqiQJkh6plphAIVvZSCtVioXinGQWmOt40CnreN6i4UEIorrCgneFb8vj_1llrD6fZjWZeD5dK-B_WHVLJ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Changbo Yang</creator><creator>Ming Dong</creator><creator>Fotouhi, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Image content annotation using Bayesian framework and complement components analysis</title><author>Changbo Yang ; Ming Dong ; Fotouhi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1e28658405d86c2a7480e5f5546c8763d921026d3bb60f3fb8634644636871da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian methods</topic><topic>Digital images</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Indexing</topic><topic>Noise reduction</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Changbo Yang</creatorcontrib><creatorcontrib>Ming Dong</creatorcontrib><creatorcontrib>Fotouhi, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changbo Yang</au><au>Ming Dong</au><au>Fotouhi, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image content annotation using Bayesian framework and complement components analysis</atitle><btitle>IEEE International Conference on Image Processing 2005</btitle><stitle>ICIP</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>I</spage><epage>1193</epage><pages>I-1193</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780391345</isbn><isbn>0780391349</isbn><abstract>In this paper, we consider image annotation as a problem of image classification, in which each keyword is treated as a distinct class label. We then build a Bayesian model to solve the classification problem. To preserve the in-variation in the training data and reduce the noises, we also propose to estimate the class conditional probabilities in the feature subspace constructed by complement components analysis (CCA). We demonstrate the effectiveness of our approach through experiments in terms of annotation precision and recall.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2005.1529970</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof IEEE International Conference on Image Processing 2005, 2005, Vol.1, p.I-1193
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_1529970
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Digital images
Feature extraction
Image analysis
Image classification
Image databases
Image retrieval
Indexing
Noise reduction
Training data
title Image content annotation using Bayesian framework and complement components analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20content%20annotation%20using%20Bayesian%20framework%20and%20complement%20components%20analysis&rft.btitle=IEEE%20International%20Conference%20on%20Image%20Processing%202005&rft.au=Changbo%20Yang&rft.date=2005&rft.volume=1&rft.spage=I&rft.epage=1193&rft.pages=I-1193&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780391345&rft.isbn_list=0780391349&rft_id=info:doi/10.1109/ICIP.2005.1529970&rft_dat=%3Cieee_6IE%3E1529970%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1529970&rfr_iscdi=true