Application of evolutionary algorithm to three key problems in VLSI layout

Evolutionary algorithm is a class of stochastic search algorithm, which can be applied to both combinatorial and numerical optimization problems, especially NP hard problems. Circuit partitioning, placement and clock routing are three key phases in VLSI physical design and they are proved to be NP h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo-Fang Nan, Min-Qiang Li, Dan Lin, Ji-Song Kou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2933 Vol. 5
container_issue
container_start_page 2929
container_title
container_volume 5
creator Guo-Fang Nan
Min-Qiang Li
Dan Lin
Ji-Song Kou
description Evolutionary algorithm is a class of stochastic search algorithm, which can be applied to both combinatorial and numerical optimization problems, especially NP hard problems. Circuit partitioning, placement and clock routing are three key phases in VLSI physical design and they are proved to be NP hard. So a genetic algorithm frame and its realization process are presented in this paper in order to solve these problems. Meanwhile, this algorithm is used to test different benchmarks for three different problems, experimental results show that it is a feasible and valid algorithm. This genetic algorithm can also improve solutions when compared with traditional heuristic methods.
doi_str_mv 10.1109/ICMLC.2005.1527443
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1527443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1527443</ieee_id><sourcerecordid>1527443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-4e98c7d5b02d3fc5fdad4309d376ed5428cf295bd6482890956c93bbc71d575f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0BEqX0B2DjH0i5tuM4XlYRj6AgFjzErnL8oAanjhIXKX9PEJ3NaDZHcxC6IrAmBORNXT011ZoC8DXhVOQ5O0EXIEpgEiQhp2hBSQEZYezjHK3G8QvmMMkLBgv0uOn74LVKPu5xdNj-xHD4G2qYsAqfcfBp1-EUcdoN1uJvO-F-iG2w3Yj9Hr83LzUOaoqHdInOnAqjXR17id7ubl-rh6x5vq-rTZN5AjxluZWlFoa3QA1zmjujTM5AGiYKa3hOS-2o5K0p8pKWswIvtGRtqwUxXHDHluj6n-uttdt-8N38dXtUZ7_bIU2x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of evolutionary algorithm to three key problems in VLSI layout</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guo-Fang Nan ; Min-Qiang Li ; Dan Lin ; Ji-Song Kou</creator><creatorcontrib>Guo-Fang Nan ; Min-Qiang Li ; Dan Lin ; Ji-Song Kou</creatorcontrib><description>Evolutionary algorithm is a class of stochastic search algorithm, which can be applied to both combinatorial and numerical optimization problems, especially NP hard problems. Circuit partitioning, placement and clock routing are three key phases in VLSI physical design and they are proved to be NP hard. So a genetic algorithm frame and its realization process are presented in this paper in order to solve these problems. Meanwhile, this algorithm is used to test different benchmarks for three different problems, experimental results show that it is a feasible and valid algorithm. This genetic algorithm can also improve solutions when compared with traditional heuristic methods.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 0780390911</identifier><identifier>ISBN: 9780780390911</identifier><identifier>DOI: 10.1109/ICMLC.2005.1527443</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Circuit testing ; Clocks ; Evolutionary algorithm ; Evolutionary computation ; genetic algorithm ; Genetic algorithms ; NP hard ; NP-hard problem ; Partitioning algorithms ; physical design ; Routing ; Stochastic processes ; Very large scale integration</subject><ispartof>2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.5, p.2929-2933 Vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1527443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1527443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo-Fang Nan</creatorcontrib><creatorcontrib>Min-Qiang Li</creatorcontrib><creatorcontrib>Dan Lin</creatorcontrib><creatorcontrib>Ji-Song Kou</creatorcontrib><title>Application of evolutionary algorithm to three key problems in VLSI layout</title><title>2005 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Evolutionary algorithm is a class of stochastic search algorithm, which can be applied to both combinatorial and numerical optimization problems, especially NP hard problems. Circuit partitioning, placement and clock routing are three key phases in VLSI physical design and they are proved to be NP hard. So a genetic algorithm frame and its realization process are presented in this paper in order to solve these problems. Meanwhile, this algorithm is used to test different benchmarks for three different problems, experimental results show that it is a feasible and valid algorithm. This genetic algorithm can also improve solutions when compared with traditional heuristic methods.</description><subject>Benchmark testing</subject><subject>Circuit testing</subject><subject>Clocks</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary computation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>NP hard</subject><subject>NP-hard problem</subject><subject>Partitioning algorithms</subject><subject>physical design</subject><subject>Routing</subject><subject>Stochastic processes</subject><subject>Very large scale integration</subject><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0BEqX0B2DjH0i5tuM4XlYRj6AgFjzErnL8oAanjhIXKX9PEJ3NaDZHcxC6IrAmBORNXT011ZoC8DXhVOQ5O0EXIEpgEiQhp2hBSQEZYezjHK3G8QvmMMkLBgv0uOn74LVKPu5xdNj-xHD4G2qYsAqfcfBp1-EUcdoN1uJvO-F-iG2w3Yj9Hr83LzUOaoqHdInOnAqjXR17id7ubl-rh6x5vq-rTZN5AjxluZWlFoa3QA1zmjujTM5AGiYKa3hOS-2o5K0p8pKWswIvtGRtqwUxXHDHluj6n-uttdt-8N38dXtUZ7_bIU2x</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Guo-Fang Nan</creator><creator>Min-Qiang Li</creator><creator>Dan Lin</creator><creator>Ji-Song Kou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Application of evolutionary algorithm to three key problems in VLSI layout</title><author>Guo-Fang Nan ; Min-Qiang Li ; Dan Lin ; Ji-Song Kou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-4e98c7d5b02d3fc5fdad4309d376ed5428cf295bd6482890956c93bbc71d575f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Benchmark testing</topic><topic>Circuit testing</topic><topic>Clocks</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary computation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>NP hard</topic><topic>NP-hard problem</topic><topic>Partitioning algorithms</topic><topic>physical design</topic><topic>Routing</topic><topic>Stochastic processes</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo-Fang Nan</creatorcontrib><creatorcontrib>Min-Qiang Li</creatorcontrib><creatorcontrib>Dan Lin</creatorcontrib><creatorcontrib>Ji-Song Kou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo-Fang Nan</au><au>Min-Qiang Li</au><au>Dan Lin</au><au>Ji-Song Kou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of evolutionary algorithm to three key problems in VLSI layout</atitle><btitle>2005 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>2929</spage><epage>2933 Vol. 5</epage><pages>2929-2933 Vol. 5</pages><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><abstract>Evolutionary algorithm is a class of stochastic search algorithm, which can be applied to both combinatorial and numerical optimization problems, especially NP hard problems. Circuit partitioning, placement and clock routing are three key phases in VLSI physical design and they are proved to be NP hard. So a genetic algorithm frame and its realization process are presented in this paper in order to solve these problems. Meanwhile, this algorithm is used to test different benchmarks for three different problems, experimental results show that it is a feasible and valid algorithm. This genetic algorithm can also improve solutions when compared with traditional heuristic methods.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2005.1527443</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.5, p.2929-2933 Vol. 5
issn 2160-133X
language eng
recordid cdi_ieee_primary_1527443
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Circuit testing
Clocks
Evolutionary algorithm
Evolutionary computation
genetic algorithm
Genetic algorithms
NP hard
NP-hard problem
Partitioning algorithms
physical design
Routing
Stochastic processes
Very large scale integration
title Application of evolutionary algorithm to three key problems in VLSI layout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20evolutionary%20algorithm%20to%20three%20key%20problems%20in%20VLSI%20layout&rft.btitle=2005%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Guo-Fang%20Nan&rft.date=2005&rft.volume=5&rft.spage=2929&rft.epage=2933%20Vol.%205&rft.pages=2929-2933%20Vol.%205&rft.issn=2160-133X&rft.isbn=0780390911&rft.isbn_list=9780780390911&rft_id=info:doi/10.1109/ICMLC.2005.1527443&rft_dat=%3Cieee_6IE%3E1527443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1527443&rfr_iscdi=true