Fusion estimation of dynamic system based on multi-speed sensor

A kind of multi-sensor system reconstruct algorithm is given based on Kalman filter, which combines multi-resolution analysis method, traditional Kalman filter and multi-sensor data fusion, and this algorithm points to the multi-speed sensor which detect the same target's state and have the mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feng Lv, Xiu-Qing Wang, Hai-Lian Du, Yuan Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1153 Vol. 2
container_issue
container_start_page 1148
container_title
container_volume 2
creator Feng Lv
Xiu-Qing Wang
Hai-Lian Du
Yuan Li
description A kind of multi-sensor system reconstruct algorithm is given based on Kalman filter, which combines multi-resolution analysis method, traditional Kalman filter and multi-sensor data fusion, and this algorithm points to the multi-speed sensor which detect the same target's state and have the multi-scale single mode dynamic system. The algorithm improves the system's estimative accuracy, and have strong robust on the abrupt unknown interference, which use the local wavelet pre-processing technology, get the optimal estimative value on the thinnest scale based on the global observing information. The algorithm's effectiveness is proved through computer simulation.
doi_str_mv 10.1109/ICMLC.2005.1527116
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1527116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1527116</ieee_id><sourcerecordid>1527116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-c8e5a455029747a6f70c33d4ed122478f5f58d6d7e331c73e128439bde08e35b3</originalsourceid><addsrcrecordid>eNotT8FKw0AUXFDBWvsDeskPJL63L5vdPYkEWwsRLwreyib7AitNUrLpIX9vxM5lZhgYZoR4QMgQwT7ty_eqzCSAylBJjVhciTvQBsiCRbwWK4kFpEj0fSs2Mf7AArKqIFiJ5-05hqFPOE6hc9OfHNrEz73rQpPEOU7cJbWL7JMl6s7HKaTxxIuN3MdhvBc3rTtG3lx4Lb62r5_lW1p97PblS5UGBDWljWHlcqVAWp1rV7QaGiKfs0cpc21a1SrjC6-ZCBtNjNLkZGvPYJhUTWvx-N8bmPlwGpex43y4_KVfzjhJEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fusion estimation of dynamic system based on multi-speed sensor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Feng Lv ; Xiu-Qing Wang ; Hai-Lian Du ; Yuan Li</creator><creatorcontrib>Feng Lv ; Xiu-Qing Wang ; Hai-Lian Du ; Yuan Li</creatorcontrib><description>A kind of multi-sensor system reconstruct algorithm is given based on Kalman filter, which combines multi-resolution analysis method, traditional Kalman filter and multi-sensor data fusion, and this algorithm points to the multi-speed sensor which detect the same target's state and have the multi-scale single mode dynamic system. The algorithm improves the system's estimative accuracy, and have strong robust on the abrupt unknown interference, which use the local wavelet pre-processing technology, get the optimal estimative value on the thinnest scale based on the global observing information. The algorithm's effectiveness is proved through computer simulation.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 0780390911</identifier><identifier>ISBN: 9780780390911</identifier><identifier>DOI: 10.1109/ICMLC.2005.1527116</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Chemical sensors ; Computer simulation ; dynamic system ; fusion estimation ; Geophysical measurements ; Interference ; Kalman filter ; Multi-scale ; Robustness ; Sea measurements ; Sensor fusion ; Sensor phenomena and characterization ; Sensor systems</subject><ispartof>2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.2, p.1148-1153 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1527116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1527116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng Lv</creatorcontrib><creatorcontrib>Xiu-Qing Wang</creatorcontrib><creatorcontrib>Hai-Lian Du</creatorcontrib><creatorcontrib>Yuan Li</creatorcontrib><title>Fusion estimation of dynamic system based on multi-speed sensor</title><title>2005 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>A kind of multi-sensor system reconstruct algorithm is given based on Kalman filter, which combines multi-resolution analysis method, traditional Kalman filter and multi-sensor data fusion, and this algorithm points to the multi-speed sensor which detect the same target's state and have the multi-scale single mode dynamic system. The algorithm improves the system's estimative accuracy, and have strong robust on the abrupt unknown interference, which use the local wavelet pre-processing technology, get the optimal estimative value on the thinnest scale based on the global observing information. The algorithm's effectiveness is proved through computer simulation.</description><subject>Algorithm design and analysis</subject><subject>Chemical sensors</subject><subject>Computer simulation</subject><subject>dynamic system</subject><subject>fusion estimation</subject><subject>Geophysical measurements</subject><subject>Interference</subject><subject>Kalman filter</subject><subject>Multi-scale</subject><subject>Robustness</subject><subject>Sea measurements</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8FKw0AUXFDBWvsDeskPJL63L5vdPYkEWwsRLwreyib7AitNUrLpIX9vxM5lZhgYZoR4QMgQwT7ty_eqzCSAylBJjVhciTvQBsiCRbwWK4kFpEj0fSs2Mf7AArKqIFiJ5-05hqFPOE6hc9OfHNrEz73rQpPEOU7cJbWL7JMl6s7HKaTxxIuN3MdhvBc3rTtG3lx4Lb62r5_lW1p97PblS5UGBDWljWHlcqVAWp1rV7QaGiKfs0cpc21a1SrjC6-ZCBtNjNLkZGvPYJhUTWvx-N8bmPlwGpex43y4_KVfzjhJEg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Feng Lv</creator><creator>Xiu-Qing Wang</creator><creator>Hai-Lian Du</creator><creator>Yuan Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Fusion estimation of dynamic system based on multi-speed sensor</title><author>Feng Lv ; Xiu-Qing Wang ; Hai-Lian Du ; Yuan Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-c8e5a455029747a6f70c33d4ed122478f5f58d6d7e331c73e128439bde08e35b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Chemical sensors</topic><topic>Computer simulation</topic><topic>dynamic system</topic><topic>fusion estimation</topic><topic>Geophysical measurements</topic><topic>Interference</topic><topic>Kalman filter</topic><topic>Multi-scale</topic><topic>Robustness</topic><topic>Sea measurements</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng Lv</creatorcontrib><creatorcontrib>Xiu-Qing Wang</creatorcontrib><creatorcontrib>Hai-Lian Du</creatorcontrib><creatorcontrib>Yuan Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng Lv</au><au>Xiu-Qing Wang</au><au>Hai-Lian Du</au><au>Yuan Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fusion estimation of dynamic system based on multi-speed sensor</atitle><btitle>2005 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>1148</spage><epage>1153 Vol. 2</epage><pages>1148-1153 Vol. 2</pages><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><abstract>A kind of multi-sensor system reconstruct algorithm is given based on Kalman filter, which combines multi-resolution analysis method, traditional Kalman filter and multi-sensor data fusion, and this algorithm points to the multi-speed sensor which detect the same target's state and have the multi-scale single mode dynamic system. The algorithm improves the system's estimative accuracy, and have strong robust on the abrupt unknown interference, which use the local wavelet pre-processing technology, get the optimal estimative value on the thinnest scale based on the global observing information. The algorithm's effectiveness is proved through computer simulation.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2005.1527116</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.2, p.1148-1153 Vol. 2
issn 2160-133X
language eng
recordid cdi_ieee_primary_1527116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Chemical sensors
Computer simulation
dynamic system
fusion estimation
Geophysical measurements
Interference
Kalman filter
Multi-scale
Robustness
Sea measurements
Sensor fusion
Sensor phenomena and characterization
Sensor systems
title Fusion estimation of dynamic system based on multi-speed sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fusion%20estimation%20of%20dynamic%20system%20based%20on%20multi-speed%20sensor&rft.btitle=2005%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Feng%20Lv&rft.date=2005&rft.volume=2&rft.spage=1148&rft.epage=1153%20Vol.%202&rft.pages=1148-1153%20Vol.%202&rft.issn=2160-133X&rft.isbn=0780390911&rft.isbn_list=9780780390911&rft_id=info:doi/10.1109/ICMLC.2005.1527116&rft_dat=%3Cieee_6IE%3E1527116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1527116&rfr_iscdi=true