Optimal performance state estimation of compute systems

This paper presents a novel approach to estimating and predicting the system-wide utilisation of computational resources in real-time. An algorithm that implements a discrete minimum mean-square error filter is applied to fuse concurrent and sequential observations of system event counts into a stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manzke, M., Coghlan, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue
container_start_page 511
container_title
container_volume
creator Manzke, M.
Coghlan, B.
description This paper presents a novel approach to estimating and predicting the system-wide utilisation of computational resources in real-time. An algorithm that implements a discrete minimum mean-square error filter is applied to fuse concurrent and sequential observations of system event counts into a state vector. Contemporary computer components and subsystems make these event counts available through hardware performance counter registers. The registers may be accessed by the system's software quasi-concurrently but the number of registers in individual components is usually smaller than the number of events that can be monitored. Our approach overcomes this problem by modeling individual hardware performance counter readings as vector random processes and recursively processes them one at a time into a common state vector, thereby making larger performance counter sets observable than would otherwise be possible.
doi_str_mv 10.1109/MASCOTS.2005.46
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1521175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1521175</ieee_id><sourcerecordid>1521175</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-7a0b4244eb10749c53b11e23535e77bbd1d42b2c03d26a1e8635567a9c518a1a3</originalsourceid><addsrcrecordid>eNotj81Lw0AUxBc_wFh79uAl_0Die2-_kmMJWoVKDq3nspu8QKRpQnY99L83oqeBmWGYnxCPCDkilM8fm31VH_Y5AehcmSuRkLQ6AyJ7LdalLcCaUpPSBdyIBDWZzGpZ3on7EL4ACFDLRNh6iv3gTunEczfOgzs3nIboIqccfpPYj-d07NJmHKbvxQ2XEHkID-K2c6fA639dic_Xl0P1lu3q7Xu12WU9oYmZdeAVKcUewaqy0dIjMkktNVvrfYutIk8NyJaMQy6M1NpYtzSxcOjkSjz97fbMfJzm5dF8OS40iAvND_02R-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal performance state estimation of compute systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Manzke, M. ; Coghlan, B.</creator><creatorcontrib>Manzke, M. ; Coghlan, B.</creatorcontrib><description>This paper presents a novel approach to estimating and predicting the system-wide utilisation of computational resources in real-time. An algorithm that implements a discrete minimum mean-square error filter is applied to fuse concurrent and sequential observations of system event counts into a state vector. Contemporary computer components and subsystems make these event counts available through hardware performance counter registers. The registers may be accessed by the system's software quasi-concurrently but the number of registers in individual components is usually smaller than the number of events that can be monitored. Our approach overcomes this problem by modeling individual hardware performance counter readings as vector random processes and recursively processes them one at a time into a common state vector, thereby making larger performance counter sets observable than would otherwise be possible.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 9780769524580</identifier><identifier>ISBN: 0769524583</identifier><identifier>EISSN: 2375-0227</identifier><identifier>DOI: 10.1109/MASCOTS.2005.46</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computerized monitoring ; Counting circuits ; Filters ; Fuses ; Hardware ; Random processes ; Real time systems ; Registers ; State estimation ; System software</subject><ispartof>13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2005, p.511-514</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1521175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1521175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manzke, M.</creatorcontrib><creatorcontrib>Coghlan, B.</creatorcontrib><title>Optimal performance state estimation of compute systems</title><title>13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems</title><addtitle>MASCOT</addtitle><description>This paper presents a novel approach to estimating and predicting the system-wide utilisation of computational resources in real-time. An algorithm that implements a discrete minimum mean-square error filter is applied to fuse concurrent and sequential observations of system event counts into a state vector. Contemporary computer components and subsystems make these event counts available through hardware performance counter registers. The registers may be accessed by the system's software quasi-concurrently but the number of registers in individual components is usually smaller than the number of events that can be monitored. Our approach overcomes this problem by modeling individual hardware performance counter readings as vector random processes and recursively processes them one at a time into a common state vector, thereby making larger performance counter sets observable than would otherwise be possible.</description><subject>Computerized monitoring</subject><subject>Counting circuits</subject><subject>Filters</subject><subject>Fuses</subject><subject>Hardware</subject><subject>Random processes</subject><subject>Real time systems</subject><subject>Registers</subject><subject>State estimation</subject><subject>System software</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>9780769524580</isbn><isbn>0769524583</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Lw0AUxBc_wFh79uAl_0Die2-_kmMJWoVKDq3nspu8QKRpQnY99L83oqeBmWGYnxCPCDkilM8fm31VH_Y5AehcmSuRkLQ6AyJ7LdalLcCaUpPSBdyIBDWZzGpZ3on7EL4ACFDLRNh6iv3gTunEczfOgzs3nIboIqccfpPYj-d07NJmHKbvxQ2XEHkID-K2c6fA639dic_Xl0P1lu3q7Xu12WU9oYmZdeAVKcUewaqy0dIjMkktNVvrfYutIk8NyJaMQy6M1NpYtzSxcOjkSjz97fbMfJzm5dF8OS40iAvND_02R-A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Manzke, M.</creator><creator>Coghlan, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Optimal performance state estimation of compute systems</title><author>Manzke, M. ; Coghlan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-7a0b4244eb10749c53b11e23535e77bbd1d42b2c03d26a1e8635567a9c518a1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computerized monitoring</topic><topic>Counting circuits</topic><topic>Filters</topic><topic>Fuses</topic><topic>Hardware</topic><topic>Random processes</topic><topic>Real time systems</topic><topic>Registers</topic><topic>State estimation</topic><topic>System software</topic><toplevel>online_resources</toplevel><creatorcontrib>Manzke, M.</creatorcontrib><creatorcontrib>Coghlan, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manzke, M.</au><au>Coghlan, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal performance state estimation of compute systems</atitle><btitle>13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems</btitle><stitle>MASCOT</stitle><date>2005</date><risdate>2005</risdate><spage>511</spage><epage>514</epage><pages>511-514</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>9780769524580</isbn><isbn>0769524583</isbn><abstract>This paper presents a novel approach to estimating and predicting the system-wide utilisation of computational resources in real-time. An algorithm that implements a discrete minimum mean-square error filter is applied to fuse concurrent and sequential observations of system event counts into a state vector. Contemporary computer components and subsystems make these event counts available through hardware performance counter registers. The registers may be accessed by the system's software quasi-concurrently but the number of registers in individual components is usually smaller than the number of events that can be monitored. Our approach overcomes this problem by modeling individual hardware performance counter readings as vector random processes and recursively processes them one at a time into a common state vector, thereby making larger performance counter sets observable than would otherwise be possible.</abstract><pub>IEEE</pub><doi>10.1109/MASCOTS.2005.46</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1526-7539
ispartof 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2005, p.511-514
issn 1526-7539
2375-0227
language eng
recordid cdi_ieee_primary_1521175
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computerized monitoring
Counting circuits
Filters
Fuses
Hardware
Random processes
Real time systems
Registers
State estimation
System software
title Optimal performance state estimation of compute systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20performance%20state%20estimation%20of%20compute%20systems&rft.btitle=13th%20IEEE%20International%20Symposium%20on%20Modeling,%20Analysis,%20and%20Simulation%20of%20Computer%20and%20Telecommunication%20Systems&rft.au=Manzke,%20M.&rft.date=2005&rft.spage=511&rft.epage=514&rft.pages=511-514&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=9780769524580&rft.isbn_list=0769524583&rft_id=info:doi/10.1109/MASCOTS.2005.46&rft_dat=%3Cieee_6IE%3E1521175%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1521175&rfr_iscdi=true