Inclusion filters: a class of self-dual connected operators

In this paper, we define a connected operator that either fills or retains the holes of the connected sets depending on application-specific criteria that are increasing in the set theoretic sense. We refer to this class of connected operators as inclusion filters, which are shown to be increasing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2005-11, Vol.14 (11), p.1736-1746
Hauptverfasser: Ray, N., Acton, S.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 11
container_start_page 1736
container_title IEEE transactions on image processing
container_volume 14
creator Ray, N.
Acton, S.T.
description In this paper, we define a connected operator that either fills or retains the holes of the connected sets depending on application-specific criteria that are increasing in the set theoretic sense. We refer to this class of connected operators as inclusion filters, which are shown to be increasing, idempotent, and self dual (gray-level inversion invariance). We demonstrate self duality for 8-adjacency on a discrete Cartesian grid. Inclusion filters are defined first for binary-valued images, and then the definition is extended to grayscale imagery. It is also shown that inclusion filters are levelings, a larger class of connected operators. Several important applications of inclusion filters are demonstrated-automatic segmentation of the lung cavities from magnetic resonance imagery, user interactive shape delineation in content-based image retrieval, registration of intravital microscopic video sequences, and detection and tracking of cells from these sequences. The numerical performance measures on 100-cell tracking experiments show that the use of inclusion filter improves the total number of frames successfully tracked by five times and provides a threefold reduction in the overall position error.
doi_str_mv 10.1109/TIP.2005.857251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1518939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1518939</ieee_id><sourcerecordid>68778430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1128ca6f490fb70f5d4c08a1696a8d6e8279cd7b812040b9710fe242a092b67c3</originalsourceid><addsrcrecordid>eNqFkMtLxDAQh4Movs8eBCmC3rrOpGkeehLxsSDoQc8hTROoZJs1aQ_-93bZhQUvnjKQb34z8xFyhjBDBHXzMX-fUYB6JmtBa9whh6gYlgCM7k411KIUyNQBOcr5CwBZjXyfHCCnQqFgh-Ru3tsw5i72he_C4FK-LUxhg8m5iL7ILviyHU0obOx7ZwfXFnHpkhliyidkz5uQ3enmPSafT48fDy_l69vz_OH-tbQMqqFEpNIa7pkC3wjwdcssSINccSNb7uS0i21FI5ECg0YJBO8oowYUbbiw1TG5XucuU_weXR70osvWhWB6F8esuRRCsgr-BakEDpxWE3j5B_yKY-qnI7SUFUPk9SrtZg3ZFHNOzutl6hYm_WgEvbKvJ_t6ZV-v7U8dF5vYsVm4dstvdE_A1QYw2Zrgk-ltl7ecoFQxsRp9vuY659z2u0apKlX9Aq9Akrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883411650</pqid></control><display><type>article</type><title>Inclusion filters: a class of self-dual connected operators</title><source>IEEE Electronic Library (IEL)</source><creator>Ray, N. ; Acton, S.T.</creator><creatorcontrib>Ray, N. ; Acton, S.T.</creatorcontrib><description>In this paper, we define a connected operator that either fills or retains the holes of the connected sets depending on application-specific criteria that are increasing in the set theoretic sense. We refer to this class of connected operators as inclusion filters, which are shown to be increasing, idempotent, and self dual (gray-level inversion invariance). We demonstrate self duality for 8-adjacency on a discrete Cartesian grid. Inclusion filters are defined first for binary-valued images, and then the definition is extended to grayscale imagery. It is also shown that inclusion filters are levelings, a larger class of connected operators. Several important applications of inclusion filters are demonstrated-automatic segmentation of the lung cavities from magnetic resonance imagery, user interactive shape delineation in content-based image retrieval, registration of intravital microscopic video sequences, and detection and tracking of cells from these sequences. The numerical performance measures on 100-cell tracking experiments show that the use of inclusion filter improves the total number of frames successfully tracked by five times and provides a threefold reduction in the overall position error.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.857251</identifier><identifier>PMID: 16279174</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adjacency tree ; Algorithms ; Applied sciences ; Artificial Intelligence ; connected operator ; Content based retrieval ; Exact sciences and technology ; Filters ; Gray-scale ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image retrieval ; Image segmentation ; Information Storage and Retrieval - methods ; Information theory ; Information, signal and communications theory ; level sets ; Lungs ; Magnetic force microscopy ; Magnetic resonance ; Magnetic separation ; Microscopy, Video - methods ; Numerical Analysis, Computer-Assisted ; self duality ; Shape ; Signal processing ; Signal Processing, Computer-Assisted ; Studies ; Subtraction Technique ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1736-1746</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1128ca6f490fb70f5d4c08a1696a8d6e8279cd7b812040b9710fe242a092b67c3</citedby><cites>FETCH-LOGICAL-c403t-1128ca6f490fb70f5d4c08a1696a8d6e8279cd7b812040b9710fe242a092b67c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1518939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1518939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17229470$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16279174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, N.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><title>Inclusion filters: a class of self-dual connected operators</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we define a connected operator that either fills or retains the holes of the connected sets depending on application-specific criteria that are increasing in the set theoretic sense. We refer to this class of connected operators as inclusion filters, which are shown to be increasing, idempotent, and self dual (gray-level inversion invariance). We demonstrate self duality for 8-adjacency on a discrete Cartesian grid. Inclusion filters are defined first for binary-valued images, and then the definition is extended to grayscale imagery. It is also shown that inclusion filters are levelings, a larger class of connected operators. Several important applications of inclusion filters are demonstrated-automatic segmentation of the lung cavities from magnetic resonance imagery, user interactive shape delineation in content-based image retrieval, registration of intravital microscopic video sequences, and detection and tracking of cells from these sequences. The numerical performance measures on 100-cell tracking experiments show that the use of inclusion filter improves the total number of frames successfully tracked by five times and provides a threefold reduction in the overall position error.</description><subject>Adjacency tree</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>connected operator</subject><subject>Content based retrieval</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>Gray-scale</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>level sets</subject><subject>Lungs</subject><subject>Magnetic force microscopy</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Microscopy, Video - methods</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>self duality</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Studies</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkMtLxDAQh4Movs8eBCmC3rrOpGkeehLxsSDoQc8hTROoZJs1aQ_-93bZhQUvnjKQb34z8xFyhjBDBHXzMX-fUYB6JmtBa9whh6gYlgCM7k411KIUyNQBOcr5CwBZjXyfHCCnQqFgh-Ru3tsw5i72he_C4FK-LUxhg8m5iL7ILviyHU0obOx7ZwfXFnHpkhliyidkz5uQ3enmPSafT48fDy_l69vz_OH-tbQMqqFEpNIa7pkC3wjwdcssSINccSNb7uS0i21FI5ECg0YJBO8oowYUbbiw1TG5XucuU_weXR70osvWhWB6F8esuRRCsgr-BakEDpxWE3j5B_yKY-qnI7SUFUPk9SrtZg3ZFHNOzutl6hYm_WgEvbKvJ_t6ZV-v7U8dF5vYsVm4dstvdE_A1QYw2Zrgk-ltl7ecoFQxsRp9vuY659z2u0apKlX9Aq9Akrs</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Ray, N.</creator><creator>Acton, S.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Inclusion filters: a class of self-dual connected operators</title><author>Ray, N. ; Acton, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1128ca6f490fb70f5d4c08a1696a8d6e8279cd7b812040b9710fe242a092b67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adjacency tree</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>connected operator</topic><topic>Content based retrieval</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>Gray-scale</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>level sets</topic><topic>Lungs</topic><topic>Magnetic force microscopy</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Microscopy, Video - methods</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>self duality</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Studies</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, N.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ray, N.</au><au>Acton, S.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion filters: a class of self-dual connected operators</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>14</volume><issue>11</issue><spage>1736</spage><epage>1746</epage><pages>1736-1746</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we define a connected operator that either fills or retains the holes of the connected sets depending on application-specific criteria that are increasing in the set theoretic sense. We refer to this class of connected operators as inclusion filters, which are shown to be increasing, idempotent, and self dual (gray-level inversion invariance). We demonstrate self duality for 8-adjacency on a discrete Cartesian grid. Inclusion filters are defined first for binary-valued images, and then the definition is extended to grayscale imagery. It is also shown that inclusion filters are levelings, a larger class of connected operators. Several important applications of inclusion filters are demonstrated-automatic segmentation of the lung cavities from magnetic resonance imagery, user interactive shape delineation in content-based image retrieval, registration of intravital microscopic video sequences, and detection and tracking of cells from these sequences. The numerical performance measures on 100-cell tracking experiments show that the use of inclusion filter improves the total number of frames successfully tracked by five times and provides a threefold reduction in the overall position error.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16279174</pmid><doi>10.1109/TIP.2005.857251</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2005-11, Vol.14 (11), p.1736-1746
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_1518939
source IEEE Electronic Library (IEL)
subjects Adjacency tree
Algorithms
Applied sciences
Artificial Intelligence
connected operator
Content based retrieval
Exact sciences and technology
Filters
Gray-scale
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image retrieval
Image segmentation
Information Storage and Retrieval - methods
Information theory
Information, signal and communications theory
level sets
Lungs
Magnetic force microscopy
Magnetic resonance
Magnetic separation
Microscopy, Video - methods
Numerical Analysis, Computer-Assisted
self duality
Shape
Signal processing
Signal Processing, Computer-Assisted
Studies
Subtraction Technique
Telecommunications and information theory
title Inclusion filters: a class of self-dual connected operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20filters:%20a%20class%20of%20self-dual%20connected%20operators&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ray,%20N.&rft.date=2005-11-01&rft.volume=14&rft.issue=11&rft.spage=1736&rft.epage=1746&rft.pages=1736-1746&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.857251&rft_dat=%3Cproquest_RIE%3E68778430%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883411650&rft_id=info:pmid/16279174&rft_ieee_id=1518939&rfr_iscdi=true