Multiple page size modeling and optimization

With the growing awareness that individual hardware cores will not continue to produce the same level of performance improvement, there is a need to develop an integrated approach to performance optimization. In this paper we present a paradigm for continuous program optimization (CPO), whereby auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cascaval, C., Duesterwald, E., Sweeney, P.F., Wisniewski, R.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue
container_start_page 339
container_title
container_volume
creator Cascaval, C.
Duesterwald, E.
Sweeney, P.F.
Wisniewski, R.W.
description With the growing awareness that individual hardware cores will not continue to produce the same level of performance improvement, there is a need to develop an integrated approach to performance optimization. In this paper we present a paradigm for continuous program optimization (CPO), whereby automatic agents monitor and optimize application and system performance. The monitoring data is used to analyze and create models of application and system behavior. Using this analysis, we describe how CPO agents can improve the performance of both the application and the underlying system. Using the CPO paradigm, we implemented cooperating page size optimization agents that automatically optimize large page usage. An offline agent uses vertically integrated performance data to produce a page size benefit analysis for different categories of data structures within an application. We show how an online CPO agent can use the results of the predictive analysis to automatically improve application performance. We validate that the predictions made by the CPO agent reflect the actual performance gains of up to 60% across a range of scientific applications including the SPEC-cpu2000 floating point benchmarks and two large high performance computing (HPC) applications.
doi_str_mv 10.1109/PACT.2005.32
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1515605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1515605</ieee_id><sourcerecordid>31284069</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-4b6e06d585df28050833079a9c7a1ccb723a96f1fa281d4fc5704611c8e62eb3</originalsourceid><addsrcrecordid>eNotjLlOw0AURUcsEiGko6NxRYXNe7NPGVlhkYKgSJHOGtvP0SBvZJyCfD2Rwm1OcY4uY_cIGSK4569lvsk4gMoEv2AzriWmxkl5yW7BaKe45G57xWYI1p2E2t6wRYzfcJqUSho7Y08fh3YKY0vJ6HeUxHCkpBtqakO_S3xfJ8M4hS4c_RSG_o5dN76NtPjnnG1eVpv8LV1_vr7ny3UaOOgplaUm0LWyqm64BQVWCDDOu8p4rKrScOGdbrDx3GItm0oZkBqxsqQ5lWLOHs-34374OVCcii7EitrW9zQcYiGQWwnancKHcxiIqBj3ofP73wIVKg1K_AEop1AZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31284069</pqid></control><display><type>conference_proceeding</type><title>Multiple page size modeling and optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cascaval, C. ; Duesterwald, E. ; Sweeney, P.F. ; Wisniewski, R.W.</creator><creatorcontrib>Cascaval, C. ; Duesterwald, E. ; Sweeney, P.F. ; Wisniewski, R.W.</creatorcontrib><description>With the growing awareness that individual hardware cores will not continue to produce the same level of performance improvement, there is a need to develop an integrated approach to performance optimization. In this paper we present a paradigm for continuous program optimization (CPO), whereby automatic agents monitor and optimize application and system performance. The monitoring data is used to analyze and create models of application and system behavior. Using this analysis, we describe how CPO agents can improve the performance of both the application and the underlying system. Using the CPO paradigm, we implemented cooperating page size optimization agents that automatically optimize large page usage. An offline agent uses vertically integrated performance data to produce a page size benefit analysis for different categories of data structures within an application. We show how an online CPO agent can use the results of the predictive analysis to automatically improve application performance. We validate that the predictions made by the CPO agent reflect the actual performance gains of up to 60% across a range of scientific applications including the SPEC-cpu2000 floating point benchmarks and two large high performance computing (HPC) applications.</description><identifier>ISSN: 1089-795X</identifier><identifier>ISBN: 076952429X</identifier><identifier>ISBN: 9780769524290</identifier><identifier>EISSN: 2641-7944</identifier><identifier>DOI: 10.1109/PACT.2005.32</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data structures ; Hardware ; High performance computing ; Monitoring ; Operating systems ; Optimization ; Performance analysis ; Predictive models ; System performance</subject><ispartof>14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05), 2005, p.339-349</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1515605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1515605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cascaval, C.</creatorcontrib><creatorcontrib>Duesterwald, E.</creatorcontrib><creatorcontrib>Sweeney, P.F.</creatorcontrib><creatorcontrib>Wisniewski, R.W.</creatorcontrib><title>Multiple page size modeling and optimization</title><title>14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05)</title><addtitle>PACT</addtitle><description>With the growing awareness that individual hardware cores will not continue to produce the same level of performance improvement, there is a need to develop an integrated approach to performance optimization. In this paper we present a paradigm for continuous program optimization (CPO), whereby automatic agents monitor and optimize application and system performance. The monitoring data is used to analyze and create models of application and system behavior. Using this analysis, we describe how CPO agents can improve the performance of both the application and the underlying system. Using the CPO paradigm, we implemented cooperating page size optimization agents that automatically optimize large page usage. An offline agent uses vertically integrated performance data to produce a page size benefit analysis for different categories of data structures within an application. We show how an online CPO agent can use the results of the predictive analysis to automatically improve application performance. We validate that the predictions made by the CPO agent reflect the actual performance gains of up to 60% across a range of scientific applications including the SPEC-cpu2000 floating point benchmarks and two large high performance computing (HPC) applications.</description><subject>Data structures</subject><subject>Hardware</subject><subject>High performance computing</subject><subject>Monitoring</subject><subject>Operating systems</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>Predictive models</subject><subject>System performance</subject><issn>1089-795X</issn><issn>2641-7944</issn><isbn>076952429X</isbn><isbn>9780769524290</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLlOw0AURUcsEiGko6NxRYXNe7NPGVlhkYKgSJHOGtvP0SBvZJyCfD2Rwm1OcY4uY_cIGSK4569lvsk4gMoEv2AzriWmxkl5yW7BaKe45G57xWYI1p2E2t6wRYzfcJqUSho7Y08fh3YKY0vJ6HeUxHCkpBtqakO_S3xfJ8M4hS4c_RSG_o5dN76NtPjnnG1eVpv8LV1_vr7ny3UaOOgplaUm0LWyqm64BQVWCDDOu8p4rKrScOGdbrDx3GItm0oZkBqxsqQ5lWLOHs-34374OVCcii7EitrW9zQcYiGQWwnancKHcxiIqBj3ofP73wIVKg1K_AEop1AZ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Cascaval, C.</creator><creator>Duesterwald, E.</creator><creator>Sweeney, P.F.</creator><creator>Wisniewski, R.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>Multiple page size modeling and optimization</title><author>Cascaval, C. ; Duesterwald, E. ; Sweeney, P.F. ; Wisniewski, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-4b6e06d585df28050833079a9c7a1ccb723a96f1fa281d4fc5704611c8e62eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data structures</topic><topic>Hardware</topic><topic>High performance computing</topic><topic>Monitoring</topic><topic>Operating systems</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>Predictive models</topic><topic>System performance</topic><toplevel>online_resources</toplevel><creatorcontrib>Cascaval, C.</creatorcontrib><creatorcontrib>Duesterwald, E.</creatorcontrib><creatorcontrib>Sweeney, P.F.</creatorcontrib><creatorcontrib>Wisniewski, R.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cascaval, C.</au><au>Duesterwald, E.</au><au>Sweeney, P.F.</au><au>Wisniewski, R.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiple page size modeling and optimization</atitle><btitle>14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05)</btitle><stitle>PACT</stitle><date>2005</date><risdate>2005</risdate><spage>339</spage><epage>349</epage><pages>339-349</pages><issn>1089-795X</issn><eissn>2641-7944</eissn><isbn>076952429X</isbn><isbn>9780769524290</isbn><abstract>With the growing awareness that individual hardware cores will not continue to produce the same level of performance improvement, there is a need to develop an integrated approach to performance optimization. In this paper we present a paradigm for continuous program optimization (CPO), whereby automatic agents monitor and optimize application and system performance. The monitoring data is used to analyze and create models of application and system behavior. Using this analysis, we describe how CPO agents can improve the performance of both the application and the underlying system. Using the CPO paradigm, we implemented cooperating page size optimization agents that automatically optimize large page usage. An offline agent uses vertically integrated performance data to produce a page size benefit analysis for different categories of data structures within an application. We show how an online CPO agent can use the results of the predictive analysis to automatically improve application performance. We validate that the predictions made by the CPO agent reflect the actual performance gains of up to 60% across a range of scientific applications including the SPEC-cpu2000 floating point benchmarks and two large high performance computing (HPC) applications.</abstract><pub>IEEE</pub><doi>10.1109/PACT.2005.32</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-795X
ispartof 14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05), 2005, p.339-349
issn 1089-795X
2641-7944
language eng
recordid cdi_ieee_primary_1515605
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data structures
Hardware
High performance computing
Monitoring
Operating systems
Optimization
Performance analysis
Predictive models
System performance
title Multiple page size modeling and optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiple%20page%20size%20modeling%20and%20optimization&rft.btitle=14th%20International%20Conference%20on%20Parallel%20Architectures%20and%20Compilation%20Techniques%20(PACT'05)&rft.au=Cascaval,%20C.&rft.date=2005&rft.spage=339&rft.epage=349&rft.pages=339-349&rft.issn=1089-795X&rft.eissn=2641-7944&rft.isbn=076952429X&rft.isbn_list=9780769524290&rft_id=info:doi/10.1109/PACT.2005.32&rft_dat=%3Cproquest_6IE%3E31284069%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31284069&rft_id=info:pmid/&rft_ieee_id=1515605&rfr_iscdi=true