Object identification by bistatic acoustic scattering

An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karasalo, I., Skogqvist, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500 Vol. 1
container_issue
container_start_page 495
container_title
container_volume 1
creator Karasalo, I.
Skogqvist, P.
description An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.
doi_str_mv 10.1109/OCEANSE.2005.1511764
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_1511764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1511764</ieee_id><sourcerecordid>oai_DiVA_org_kth_157095</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-67bd0bff4696a6c2f4848128e6c446b7b1bc9fd606802061ee25e1dcbfcc9e013</originalsourceid><addsrcrecordid>eNo9kN1KxDAQhQMiKGufQC_6Aq0zbZMml6XWH1jshT-3pUkna1ZtlyaL7Ntb2cVh4JzDfJyLYewGIUUEddvWTfX80qQZAE-RI5aiOGORKiUsmyuEHC9Y5P0WlskVl1heMt7qLZkQu4HG4KwzfXDTGOtDrJ0PSzBxb6a9_zN-OQaa3bi5Yue2__IUnXTF3u6b1_oxWbcPT3W1TlyGeUhEqQfQ1hZCiV6YzBaykJhJEqYohC41aqPsIEBIyEAgUcYJB6OtMYoA8xVLjr3-h3Z73e1m993Ph27qXXfn3qtumjfdZ_jokJeg-MJfH3lHRP_06Rn5L_AKVew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Object identification by bistatic acoustic scattering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karasalo, I. ; Skogqvist, P.</creator><creatorcontrib>Karasalo, I. ; Skogqvist, P.</creatorcontrib><description>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</description><identifier>ISBN: 9780780391031</identifier><identifier>ISBN: 0780391039</identifier><identifier>DOI: 10.1109/OCEANSE.2005.1511764</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic arrays ; Acoustic emissions ; Acoustic pulses ; Acoustic scattering ; Acoustic wave scattering ; Arrays ; Bistatic acoustic scattering ; Buried object detection ; Differential evolution algorithm (DE) ; Genetic algorithms ; Global optimization ; Integral equations ; Mathematical models ; Minimization methods ; Nonlinear global minimization ; Parameter estimation ; Ray-Kirchoff method ; Scattering parameters ; Time series analysis ; Transceivers ; Transmitters ; Underwater acoustics</subject><ispartof>Europe Oceans 2005, 2005, Vol.1, p.495-500 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1511764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1511764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157095$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Karasalo, I.</creatorcontrib><creatorcontrib>Skogqvist, P.</creatorcontrib><title>Object identification by bistatic acoustic scattering</title><title>Europe Oceans 2005</title><addtitle>OCEANSE</addtitle><description>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</description><subject>Acoustic arrays</subject><subject>Acoustic emissions</subject><subject>Acoustic pulses</subject><subject>Acoustic scattering</subject><subject>Acoustic wave scattering</subject><subject>Arrays</subject><subject>Bistatic acoustic scattering</subject><subject>Buried object detection</subject><subject>Differential evolution algorithm (DE)</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Integral equations</subject><subject>Mathematical models</subject><subject>Minimization methods</subject><subject>Nonlinear global minimization</subject><subject>Parameter estimation</subject><subject>Ray-Kirchoff method</subject><subject>Scattering parameters</subject><subject>Time series analysis</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>Underwater acoustics</subject><isbn>9780780391031</isbn><isbn>0780391039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1KxDAQhQMiKGufQC_6Aq0zbZMml6XWH1jshT-3pUkna1ZtlyaL7Ntb2cVh4JzDfJyLYewGIUUEddvWTfX80qQZAE-RI5aiOGORKiUsmyuEHC9Y5P0WlskVl1heMt7qLZkQu4HG4KwzfXDTGOtDrJ0PSzBxb6a9_zN-OQaa3bi5Yue2__IUnXTF3u6b1_oxWbcPT3W1TlyGeUhEqQfQ1hZCiV6YzBaykJhJEqYohC41aqPsIEBIyEAgUcYJB6OtMYoA8xVLjr3-h3Z73e1m993Ph27qXXfn3qtumjfdZ_jokJeg-MJfH3lHRP_06Rn5L_AKVew</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Karasalo, I.</creator><creator>Skogqvist, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>2005</creationdate><title>Object identification by bistatic acoustic scattering</title><author>Karasalo, I. ; Skogqvist, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-67bd0bff4696a6c2f4848128e6c446b7b1bc9fd606802061ee25e1dcbfcc9e013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic arrays</topic><topic>Acoustic emissions</topic><topic>Acoustic pulses</topic><topic>Acoustic scattering</topic><topic>Acoustic wave scattering</topic><topic>Arrays</topic><topic>Bistatic acoustic scattering</topic><topic>Buried object detection</topic><topic>Differential evolution algorithm (DE)</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Integral equations</topic><topic>Mathematical models</topic><topic>Minimization methods</topic><topic>Nonlinear global minimization</topic><topic>Parameter estimation</topic><topic>Ray-Kirchoff method</topic><topic>Scattering parameters</topic><topic>Time series analysis</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>Underwater acoustics</topic><toplevel>online_resources</toplevel><creatorcontrib>Karasalo, I.</creatorcontrib><creatorcontrib>Skogqvist, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karasalo, I.</au><au>Skogqvist, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object identification by bistatic acoustic scattering</atitle><btitle>Europe Oceans 2005</btitle><stitle>OCEANSE</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>495</spage><epage>500 Vol. 1</epage><pages>495-500 Vol. 1</pages><isbn>9780780391031</isbn><isbn>0780391039</isbn><abstract>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</abstract><pub>IEEE</pub><doi>10.1109/OCEANSE.2005.1511764</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780391031
ispartof Europe Oceans 2005, 2005, Vol.1, p.495-500 Vol. 1
issn
language eng
recordid cdi_ieee_primary_1511764
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic arrays
Acoustic emissions
Acoustic pulses
Acoustic scattering
Acoustic wave scattering
Arrays
Bistatic acoustic scattering
Buried object detection
Differential evolution algorithm (DE)
Genetic algorithms
Global optimization
Integral equations
Mathematical models
Minimization methods
Nonlinear global minimization
Parameter estimation
Ray-Kirchoff method
Scattering parameters
Time series analysis
Transceivers
Transmitters
Underwater acoustics
title Object identification by bistatic acoustic scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20identification%20by%20bistatic%20acoustic%20scattering&rft.btitle=Europe%20Oceans%202005&rft.au=Karasalo,%20I.&rft.date=2005&rft.volume=1&rft.spage=495&rft.epage=500%20Vol.%201&rft.pages=495-500%20Vol.%201&rft.isbn=9780780391031&rft.isbn_list=0780391039&rft_id=info:doi/10.1109/OCEANSE.2005.1511764&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_157095%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1511764&rfr_iscdi=true