Object identification by bistatic acoustic scattering
An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 Vol. 1 |
---|---|
container_issue | |
container_start_page | 495 |
container_title | |
container_volume | 1 |
creator | Karasalo, I. Skogqvist, P. |
description | An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only. |
doi_str_mv | 10.1109/OCEANSE.2005.1511764 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_1511764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1511764</ieee_id><sourcerecordid>oai_DiVA_org_kth_157095</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-67bd0bff4696a6c2f4848128e6c446b7b1bc9fd606802061ee25e1dcbfcc9e013</originalsourceid><addsrcrecordid>eNo9kN1KxDAQhQMiKGufQC_6Aq0zbZMml6XWH1jshT-3pUkna1ZtlyaL7Ntb2cVh4JzDfJyLYewGIUUEddvWTfX80qQZAE-RI5aiOGORKiUsmyuEHC9Y5P0WlskVl1heMt7qLZkQu4HG4KwzfXDTGOtDrJ0PSzBxb6a9_zN-OQaa3bi5Yue2__IUnXTF3u6b1_oxWbcPT3W1TlyGeUhEqQfQ1hZCiV6YzBaykJhJEqYohC41aqPsIEBIyEAgUcYJB6OtMYoA8xVLjr3-h3Z73e1m993Ph27qXXfn3qtumjfdZ_jokJeg-MJfH3lHRP_06Rn5L_AKVew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Object identification by bistatic acoustic scattering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karasalo, I. ; Skogqvist, P.</creator><creatorcontrib>Karasalo, I. ; Skogqvist, P.</creatorcontrib><description>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</description><identifier>ISBN: 9780780391031</identifier><identifier>ISBN: 0780391039</identifier><identifier>DOI: 10.1109/OCEANSE.2005.1511764</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic arrays ; Acoustic emissions ; Acoustic pulses ; Acoustic scattering ; Acoustic wave scattering ; Arrays ; Bistatic acoustic scattering ; Buried object detection ; Differential evolution algorithm (DE) ; Genetic algorithms ; Global optimization ; Integral equations ; Mathematical models ; Minimization methods ; Nonlinear global minimization ; Parameter estimation ; Ray-Kirchoff method ; Scattering parameters ; Time series analysis ; Transceivers ; Transmitters ; Underwater acoustics</subject><ispartof>Europe Oceans 2005, 2005, Vol.1, p.495-500 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1511764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1511764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157095$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Karasalo, I.</creatorcontrib><creatorcontrib>Skogqvist, P.</creatorcontrib><title>Object identification by bistatic acoustic scattering</title><title>Europe Oceans 2005</title><addtitle>OCEANSE</addtitle><description>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</description><subject>Acoustic arrays</subject><subject>Acoustic emissions</subject><subject>Acoustic pulses</subject><subject>Acoustic scattering</subject><subject>Acoustic wave scattering</subject><subject>Arrays</subject><subject>Bistatic acoustic scattering</subject><subject>Buried object detection</subject><subject>Differential evolution algorithm (DE)</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Integral equations</subject><subject>Mathematical models</subject><subject>Minimization methods</subject><subject>Nonlinear global minimization</subject><subject>Parameter estimation</subject><subject>Ray-Kirchoff method</subject><subject>Scattering parameters</subject><subject>Time series analysis</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>Underwater acoustics</subject><isbn>9780780391031</isbn><isbn>0780391039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1KxDAQhQMiKGufQC_6Aq0zbZMml6XWH1jshT-3pUkna1ZtlyaL7Ntb2cVh4JzDfJyLYewGIUUEddvWTfX80qQZAE-RI5aiOGORKiUsmyuEHC9Y5P0WlskVl1heMt7qLZkQu4HG4KwzfXDTGOtDrJ0PSzBxb6a9_zN-OQaa3bi5Yue2__IUnXTF3u6b1_oxWbcPT3W1TlyGeUhEqQfQ1hZCiV6YzBaykJhJEqYohC41aqPsIEBIyEAgUcYJB6OtMYoA8xVLjr3-h3Z73e1m993Ph27qXXfn3qtumjfdZ_jokJeg-MJfH3lHRP_06Rn5L_AKVew</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Karasalo, I.</creator><creator>Skogqvist, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>2005</creationdate><title>Object identification by bistatic acoustic scattering</title><author>Karasalo, I. ; Skogqvist, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-67bd0bff4696a6c2f4848128e6c446b7b1bc9fd606802061ee25e1dcbfcc9e013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic arrays</topic><topic>Acoustic emissions</topic><topic>Acoustic pulses</topic><topic>Acoustic scattering</topic><topic>Acoustic wave scattering</topic><topic>Arrays</topic><topic>Bistatic acoustic scattering</topic><topic>Buried object detection</topic><topic>Differential evolution algorithm (DE)</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Integral equations</topic><topic>Mathematical models</topic><topic>Minimization methods</topic><topic>Nonlinear global minimization</topic><topic>Parameter estimation</topic><topic>Ray-Kirchoff method</topic><topic>Scattering parameters</topic><topic>Time series analysis</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>Underwater acoustics</topic><toplevel>online_resources</toplevel><creatorcontrib>Karasalo, I.</creatorcontrib><creatorcontrib>Skogqvist, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karasalo, I.</au><au>Skogqvist, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object identification by bistatic acoustic scattering</atitle><btitle>Europe Oceans 2005</btitle><stitle>OCEANSE</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>495</spage><epage>500 Vol. 1</epage><pages>495-500 Vol. 1</pages><isbn>9780780391031</isbn><isbn>0780391039</isbn><abstract>An inversion technique is described for remote estimation of parameters of submerged or buried objects using a ROV-mounted directive acoustic source and a separately located vertical receiver array. The transmitter emits a train of pulses towards the object, and the scattered echoes are recorded at the receivers for subsequent parameter estimation. Parameters of the object are estimated by nonlinear global minimization of the misfit between the experimentally observed and model-predicted time-series. Two global minimization methods, a genetic algorithm (GA) and a differential evolution algorithm (DE), are considered. A fast approximative technique for computing the scattered field, the RK (Ray-Kirchoff) method, is described and used as forward model at the parameter search. The accuracy of the transient scattered field predicted by the RK method is assessed in a model case, using an accurate full-field boundary integral equation (BIE) method as reference. Experimental data are presented from a sea trial within the EU SITAR project in the Stockholm archipelago in September 2003. In the trial, a semi-buried box-shaped object was investigated using a ROV-mounted TOPAS 120 parametric sonar as source. A fitness function suitable for the characteristics of the experimental data and the accuracy properties of the RK method is formulated, and the inversion methods are applied on the data to estimate, in a step-wise manner, seven physical parameters of the object; range, depth, roll, yaw, pitch, density and soundspeed. The estimated parameter values are shown to reduce the model-data misfit significantly compared with those based on prior information only.</abstract><pub>IEEE</pub><doi>10.1109/OCEANSE.2005.1511764</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780391031 |
ispartof | Europe Oceans 2005, 2005, Vol.1, p.495-500 Vol. 1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1511764 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic arrays Acoustic emissions Acoustic pulses Acoustic scattering Acoustic wave scattering Arrays Bistatic acoustic scattering Buried object detection Differential evolution algorithm (DE) Genetic algorithms Global optimization Integral equations Mathematical models Minimization methods Nonlinear global minimization Parameter estimation Ray-Kirchoff method Scattering parameters Time series analysis Transceivers Transmitters Underwater acoustics |
title | Object identification by bistatic acoustic scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20identification%20by%20bistatic%20acoustic%20scattering&rft.btitle=Europe%20Oceans%202005&rft.au=Karasalo,%20I.&rft.date=2005&rft.volume=1&rft.spage=495&rft.epage=500%20Vol.%201&rft.pages=495-500%20Vol.%201&rft.isbn=9780780391031&rft.isbn_list=0780391039&rft_id=info:doi/10.1109/OCEANSE.2005.1511764&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_157095%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1511764&rfr_iscdi=true |