An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems

There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2005-10, Vol.35 (5), p.915-927
Hauptverfasser: Cantu-Paz, E., Kamath, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 5
container_start_page 915
container_title IEEE transactions on cybernetics
container_volume 35
creator Cantu-Paz, E.
Kamath, C.
description There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.
doi_str_mv 10.1109/TSMCB.2005.847740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1510768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1510768</ieee_id><sourcerecordid>68712910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EoqXwAxASijjAKcuM489jWfFRqYgD5Rw5iQ0uib3YCaj_vs7uSpU4FA6WPZpn3rE9LyHPETaIoN9eff28fbehAHyjmJQMHpBT1AxrYJo-LGdQTc0Y6hPyJOdrANCg5WNygoIykEKdknQeKjvtfPK9Gas-TjuTfI6him6NOh_M7GPIa2x_x3FZI5NuKjN-j8nPP6ZcmTBUwS6pCAQ7_4npZ65cTFU_mpy9K8prUbVLsRvtlJ-SR86M2T477mfk24f3V9tP9eWXjxfb88u65yDmWgBDMyAIMK5BCk7LjrpeCKCNUXxQg0K0vabY9JJ2jnEOmlNpOjCGM9mckTcH3dL412Lz3E4-93YcTbBxya3SAqUQjBXy9b2kUBKpRvgnSJWWZen_AMvrYH_JV3-B13FJofxLq4QUkqNSBcID1KeYc7Ku3SU_lSm0CO3qhHbvhHZ1QntwQql5eRReuskOdxXH0RfgxQHw1tq7NMd99haUKLf9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675188</pqid></control><display><type>article</type><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><source>IEEE Electronic Library (IEL)</source><creator>Cantu-Paz, E. ; Kamath, C.</creator><creatorcontrib>Cantu-Paz, E. ; Kamath, C.</creatorcontrib><description>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2005.847740</identifier><identifier>PMID: 16240768</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial neural networks ; Backpropagation algorithms ; Biological cells ; Biological Evolution ; Classification ; Cluster Analysis ; Encoding ; evolutionary algorithms ; Evolutionary computation ; feature selection ; Machine learning ; Models, Genetic ; network design ; Neural networks ; Neural Networks (Computer) ; Pattern Recognition, Automated - methods ; Software ; Software Validation ; Systems Integration ; Testing ; training algorithms ; Training data</subject><ispartof>IEEE transactions on cybernetics, 2005-10, Vol.35 (5), p.915-927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</citedby><cites>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1510768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1510768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16240768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantu-Paz, E.</creatorcontrib><creatorcontrib>Kamath, C.</creatorcontrib><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>Biological cells</subject><subject>Biological Evolution</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Encoding</subject><subject>evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>feature selection</subject><subject>Machine learning</subject><subject>Models, Genetic</subject><subject>network design</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Software</subject><subject>Software Validation</subject><subject>Systems Integration</subject><subject>Testing</subject><subject>training algorithms</subject><subject>Training data</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EoqXwAxASijjAKcuM489jWfFRqYgD5Rw5iQ0uib3YCaj_vs7uSpU4FA6WPZpn3rE9LyHPETaIoN9eff28fbehAHyjmJQMHpBT1AxrYJo-LGdQTc0Y6hPyJOdrANCg5WNygoIykEKdknQeKjvtfPK9Gas-TjuTfI6him6NOh_M7GPIa2x_x3FZI5NuKjN-j8nPP6ZcmTBUwS6pCAQ7_4npZ65cTFU_mpy9K8prUbVLsRvtlJ-SR86M2T477mfk24f3V9tP9eWXjxfb88u65yDmWgBDMyAIMK5BCk7LjrpeCKCNUXxQg0K0vabY9JJ2jnEOmlNpOjCGM9mckTcH3dL412Lz3E4-93YcTbBxya3SAqUQjBXy9b2kUBKpRvgnSJWWZen_AMvrYH_JV3-B13FJofxLq4QUkqNSBcID1KeYc7Ku3SU_lSm0CO3qhHbvhHZ1QntwQql5eRReuskOdxXH0RfgxQHw1tq7NMd99haUKLf9</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Cantu-Paz, E.</creator><creator>Kamath, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20051001</creationdate><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><author>Cantu-Paz, E. ; Kamath, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>Biological cells</topic><topic>Biological Evolution</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Encoding</topic><topic>evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>feature selection</topic><topic>Machine learning</topic><topic>Models, Genetic</topic><topic>network design</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Software</topic><topic>Software Validation</topic><topic>Systems Integration</topic><topic>Testing</topic><topic>training algorithms</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantu-Paz, E.</creatorcontrib><creatorcontrib>Kamath, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cantu-Paz, E.</au><au>Kamath, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>35</volume><issue>5</issue><spage>915</spage><epage>927</epage><pages>915-927</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16240768</pmid><doi>10.1109/TSMCB.2005.847740</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2005-10, Vol.35 (5), p.915-927
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_ieee_primary_1510768
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Artificial neural networks
Backpropagation algorithms
Biological cells
Biological Evolution
Classification
Cluster Analysis
Encoding
evolutionary algorithms
Evolutionary computation
feature selection
Machine learning
Models, Genetic
network design
Neural networks
Neural Networks (Computer)
Pattern Recognition, Automated - methods
Software
Software Validation
Systems Integration
Testing
training algorithms
Training data
title An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20comparison%20of%20combinations%20of%20evolutionary%20algorithms%20and%20neural%20networks%20for%20classification%20problems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Cantu-Paz,%20E.&rft.date=2005-10-01&rft.volume=35&rft.issue=5&rft.spage=915&rft.epage=927&rft.pages=915-927&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2005.847740&rft_dat=%3Cproquest_RIE%3E68712910%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867675188&rft_id=info:pmid/16240768&rft_ieee_id=1510768&rfr_iscdi=true