An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2005-10, Vol.35 (5), p.915-927 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 927 |
---|---|
container_issue | 5 |
container_start_page | 915 |
container_title | IEEE transactions on cybernetics |
container_volume | 35 |
creator | Cantu-Paz, E. Kamath, C. |
description | There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation. |
doi_str_mv | 10.1109/TSMCB.2005.847740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1510768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1510768</ieee_id><sourcerecordid>68712910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EoqXwAxASijjAKcuM489jWfFRqYgD5Rw5iQ0uib3YCaj_vs7uSpU4FA6WPZpn3rE9LyHPETaIoN9eff28fbehAHyjmJQMHpBT1AxrYJo-LGdQTc0Y6hPyJOdrANCg5WNygoIykEKdknQeKjvtfPK9Gas-TjuTfI6him6NOh_M7GPIa2x_x3FZI5NuKjN-j8nPP6ZcmTBUwS6pCAQ7_4npZ65cTFU_mpy9K8prUbVLsRvtlJ-SR86M2T477mfk24f3V9tP9eWXjxfb88u65yDmWgBDMyAIMK5BCk7LjrpeCKCNUXxQg0K0vabY9JJ2jnEOmlNpOjCGM9mckTcH3dL412Lz3E4-93YcTbBxya3SAqUQjBXy9b2kUBKpRvgnSJWWZen_AMvrYH_JV3-B13FJofxLq4QUkqNSBcID1KeYc7Ku3SU_lSm0CO3qhHbvhHZ1QntwQql5eRReuskOdxXH0RfgxQHw1tq7NMd99haUKLf9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675188</pqid></control><display><type>article</type><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><source>IEEE Electronic Library (IEL)</source><creator>Cantu-Paz, E. ; Kamath, C.</creator><creatorcontrib>Cantu-Paz, E. ; Kamath, C.</creatorcontrib><description>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2005.847740</identifier><identifier>PMID: 16240768</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial neural networks ; Backpropagation algorithms ; Biological cells ; Biological Evolution ; Classification ; Cluster Analysis ; Encoding ; evolutionary algorithms ; Evolutionary computation ; feature selection ; Machine learning ; Models, Genetic ; network design ; Neural networks ; Neural Networks (Computer) ; Pattern Recognition, Automated - methods ; Software ; Software Validation ; Systems Integration ; Testing ; training algorithms ; Training data</subject><ispartof>IEEE transactions on cybernetics, 2005-10, Vol.35 (5), p.915-927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</citedby><cites>FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1510768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1510768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16240768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantu-Paz, E.</creatorcontrib><creatorcontrib>Kamath, C.</creatorcontrib><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>Biological cells</subject><subject>Biological Evolution</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Encoding</subject><subject>evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>feature selection</subject><subject>Machine learning</subject><subject>Models, Genetic</subject><subject>network design</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Software</subject><subject>Software Validation</subject><subject>Systems Integration</subject><subject>Testing</subject><subject>training algorithms</subject><subject>Training data</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EoqXwAxASijjAKcuM489jWfFRqYgD5Rw5iQ0uib3YCaj_vs7uSpU4FA6WPZpn3rE9LyHPETaIoN9eff28fbehAHyjmJQMHpBT1AxrYJo-LGdQTc0Y6hPyJOdrANCg5WNygoIykEKdknQeKjvtfPK9Gas-TjuTfI6him6NOh_M7GPIa2x_x3FZI5NuKjN-j8nPP6ZcmTBUwS6pCAQ7_4npZ65cTFU_mpy9K8prUbVLsRvtlJ-SR86M2T477mfk24f3V9tP9eWXjxfb88u65yDmWgBDMyAIMK5BCk7LjrpeCKCNUXxQg0K0vabY9JJ2jnEOmlNpOjCGM9mckTcH3dL412Lz3E4-93YcTbBxya3SAqUQjBXy9b2kUBKpRvgnSJWWZen_AMvrYH_JV3-B13FJofxLq4QUkqNSBcID1KeYc7Ku3SU_lSm0CO3qhHbvhHZ1QntwQql5eRReuskOdxXH0RfgxQHw1tq7NMd99haUKLf9</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Cantu-Paz, E.</creator><creator>Kamath, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20051001</creationdate><title>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</title><author>Cantu-Paz, E. ; Kamath, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-6041ad1060af3120f97b2fc66023a85d8d811ec9213c72bf45509527ab0aa5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>Biological cells</topic><topic>Biological Evolution</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Encoding</topic><topic>evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>feature selection</topic><topic>Machine learning</topic><topic>Models, Genetic</topic><topic>network design</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Software</topic><topic>Software Validation</topic><topic>Systems Integration</topic><topic>Testing</topic><topic>training algorithms</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantu-Paz, E.</creatorcontrib><creatorcontrib>Kamath, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cantu-Paz, E.</au><au>Kamath, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>35</volume><issue>5</issue><spage>915</spage><epage>927</epage><pages>915-927</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16240768</pmid><doi>10.1109/TSMCB.2005.847740</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2005-10, Vol.35 (5), p.915-927 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_1510768 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Artificial neural networks Backpropagation algorithms Biological cells Biological Evolution Classification Cluster Analysis Encoding evolutionary algorithms Evolutionary computation feature selection Machine learning Models, Genetic network design Neural networks Neural Networks (Computer) Pattern Recognition, Automated - methods Software Software Validation Systems Integration Testing training algorithms Training data |
title | An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20comparison%20of%20combinations%20of%20evolutionary%20algorithms%20and%20neural%20networks%20for%20classification%20problems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Cantu-Paz,%20E.&rft.date=2005-10-01&rft.volume=35&rft.issue=5&rft.spage=915&rft.epage=927&rft.pages=915-927&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2005.847740&rft_dat=%3Cproquest_RIE%3E68712910%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867675188&rft_id=info:pmid/16240768&rft_ieee_id=1510768&rfr_iscdi=true |