A Move processor for bio-inspired systems
The structure and operation of multi-cellular organisms relies, among other things, on the specialization of the cells' physical structure to a finite set of specific operations. If we wish to make the analogy between a biological cell and a digital processor, we should note that nature's...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | |
container_start_page | 262 |
container_title | |
container_volume | |
creator | Tempesti, G. Mudry, P.-A. Hoffmann, R. |
description | The structure and operation of multi-cellular organisms relies, among other things, on the specialization of the cells' physical structure to a finite set of specific operations. If we wish to make the analogy between a biological cell and a digital processor, we should note that nature's approach to parallel processing is subtly different from conventional von Neumann architectures or even from conventional parallel processing approaches, where specialization is obtained by adapting software to a fixed hardware structure. In this article we present the outline of a novel processor architecture based on the Move or TTA (Transport-Triggered Architecture) approach. The features of such architectures allow them to implement systems that more closely resemble, within the limitations imposed by the capabilities of conventional silicon, the general modus operandi of multi-cellular organisms. |
doi_str_mv | 10.1109/EH.2005.3 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1508509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1508509</ieee_id><sourcerecordid>1508509</sourcerecordid><originalsourceid>FETCH-LOGICAL-i210t-596ea59135fe5df166333368bedec584b62fc2ae6d07584be506e886932d715e3</originalsourceid><addsrcrecordid>eNotjEFLAzEQRgMq2FYPnr3s1UPWSdKZzRxLqa3Q0ouey-5mAhHrLkkR-u-t6AePx7t8Sj0YqI0Bfl5taguAtbtSU2iI0Trm-bWaGETQBJZv1bSUDwBHDbuJelpUu-FbqjEPvZQy5Cpe6NKg01cZU5ZQlXM5ybHcqZvYfha5__dMvb-s3pYbvd2vX5eLrU7WwEkjk7TIxmEUDNEQucvIdxKkRz_vyMbetkIBmt8UBBLviZ0NjUFxM_X495tE5DDmdGzz-WAQPAK7H_uXPhU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Move processor for bio-inspired systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tempesti, G. ; Mudry, P.-A. ; Hoffmann, R.</creator><creatorcontrib>Tempesti, G. ; Mudry, P.-A. ; Hoffmann, R.</creatorcontrib><description>The structure and operation of multi-cellular organisms relies, among other things, on the specialization of the cells' physical structure to a finite set of specific operations. If we wish to make the analogy between a biological cell and a digital processor, we should note that nature's approach to parallel processing is subtly different from conventional von Neumann architectures or even from conventional parallel processing approaches, where specialization is obtained by adapting software to a fixed hardware structure. In this article we present the outline of a novel processor architecture based on the Move or TTA (Transport-Triggered Architecture) approach. The features of such architectures allow them to implement systems that more closely resemble, within the limitations imposed by the capabilities of conventional silicon, the general modus operandi of multi-cellular organisms.</description><identifier>ISSN: 1550-6029</identifier><identifier>ISBN: 0769523994</identifier><identifier>ISBN: 9780769523996</identifier><identifier>DOI: 10.1109/EH.2005.3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological systems ; Cells (biology) ; Circuits ; Computer architecture ; Embryo ; Evolution (biology) ; Hardware ; Organisms ; Parallel processing ; Silicon</subject><ispartof>2005 NASA/DoD Conference on Evolvable Hardware (EH'05), 2005, p.262-271</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1508509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1508509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tempesti, G.</creatorcontrib><creatorcontrib>Mudry, P.-A.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><title>A Move processor for bio-inspired systems</title><title>2005 NASA/DoD Conference on Evolvable Hardware (EH'05)</title><addtitle>EH</addtitle><description>The structure and operation of multi-cellular organisms relies, among other things, on the specialization of the cells' physical structure to a finite set of specific operations. If we wish to make the analogy between a biological cell and a digital processor, we should note that nature's approach to parallel processing is subtly different from conventional von Neumann architectures or even from conventional parallel processing approaches, where specialization is obtained by adapting software to a fixed hardware structure. In this article we present the outline of a novel processor architecture based on the Move or TTA (Transport-Triggered Architecture) approach. The features of such architectures allow them to implement systems that more closely resemble, within the limitations imposed by the capabilities of conventional silicon, the general modus operandi of multi-cellular organisms.</description><subject>Biological systems</subject><subject>Cells (biology)</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Embryo</subject><subject>Evolution (biology)</subject><subject>Hardware</subject><subject>Organisms</subject><subject>Parallel processing</subject><subject>Silicon</subject><issn>1550-6029</issn><isbn>0769523994</isbn><isbn>9780769523996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEFLAzEQRgMq2FYPnr3s1UPWSdKZzRxLqa3Q0ouey-5mAhHrLkkR-u-t6AePx7t8Sj0YqI0Bfl5taguAtbtSU2iI0Trm-bWaGETQBJZv1bSUDwBHDbuJelpUu-FbqjEPvZQy5Cpe6NKg01cZU5ZQlXM5ybHcqZvYfha5__dMvb-s3pYbvd2vX5eLrU7WwEkjk7TIxmEUDNEQucvIdxKkRz_vyMbetkIBmt8UBBLviZ0NjUFxM_X495tE5DDmdGzz-WAQPAK7H_uXPhU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Tempesti, G.</creator><creator>Mudry, P.-A.</creator><creator>Hoffmann, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A Move processor for bio-inspired systems</title><author>Tempesti, G. ; Mudry, P.-A. ; Hoffmann, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i210t-596ea59135fe5df166333368bedec584b62fc2ae6d07584be506e886932d715e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological systems</topic><topic>Cells (biology)</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Embryo</topic><topic>Evolution (biology)</topic><topic>Hardware</topic><topic>Organisms</topic><topic>Parallel processing</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Tempesti, G.</creatorcontrib><creatorcontrib>Mudry, P.-A.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tempesti, G.</au><au>Mudry, P.-A.</au><au>Hoffmann, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Move processor for bio-inspired systems</atitle><btitle>2005 NASA/DoD Conference on Evolvable Hardware (EH'05)</btitle><stitle>EH</stitle><date>2005</date><risdate>2005</risdate><spage>262</spage><epage>271</epage><pages>262-271</pages><issn>1550-6029</issn><isbn>0769523994</isbn><isbn>9780769523996</isbn><abstract>The structure and operation of multi-cellular organisms relies, among other things, on the specialization of the cells' physical structure to a finite set of specific operations. If we wish to make the analogy between a biological cell and a digital processor, we should note that nature's approach to parallel processing is subtly different from conventional von Neumann architectures or even from conventional parallel processing approaches, where specialization is obtained by adapting software to a fixed hardware structure. In this article we present the outline of a novel processor architecture based on the Move or TTA (Transport-Triggered Architecture) approach. The features of such architectures allow them to implement systems that more closely resemble, within the limitations imposed by the capabilities of conventional silicon, the general modus operandi of multi-cellular organisms.</abstract><pub>IEEE</pub><doi>10.1109/EH.2005.3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-6029 |
ispartof | 2005 NASA/DoD Conference on Evolvable Hardware (EH'05), 2005, p.262-271 |
issn | 1550-6029 |
language | eng |
recordid | cdi_ieee_primary_1508509 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological systems Cells (biology) Circuits Computer architecture Embryo Evolution (biology) Hardware Organisms Parallel processing Silicon |
title | A Move processor for bio-inspired systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Move%20processor%20for%20bio-inspired%20systems&rft.btitle=2005%20NASA/DoD%20Conference%20on%20Evolvable%20Hardware%20(EH'05)&rft.au=Tempesti,%20G.&rft.date=2005&rft.spage=262&rft.epage=271&rft.pages=262-271&rft.issn=1550-6029&rft.isbn=0769523994&rft.isbn_list=9780769523996&rft_id=info:doi/10.1109/EH.2005.3&rft_dat=%3Cieee_6IE%3E1508509%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1508509&rfr_iscdi=true |