A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance

Rail inspection is a very important task in railway maintenance and it is periodically needed for preventing dangerous situations. Inspection is operated manually by trained human operator walking along the track searching for visual anomalies. This monitoring is unacceptable for slowness and lack o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Ruvo, G., De Ruvo, P., Marino, F., Mastronardi, G., Mazzeo, P.L., Stella, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 219
container_title
container_volume
creator De Ruvo, G.
De Ruvo, P.
Marino, F.
Mastronardi, G.
Mazzeo, P.L.
Stella, E.
description Rail inspection is a very important task in railway maintenance and it is periodically needed for preventing dangerous situations. Inspection is operated manually by trained human operator walking along the track searching for visual anomalies. This monitoring is unacceptable for slowness and lack of objectivity, because the results are related to the ability of the observer to recognize critical situations. The paper presents a prototypal FPGA-based architecture which automatically detects presence/absence of the fastening bolts that fix the rails to the sleepers. A simple predicting algorithm, exploiting the geometry of the railways, extracts, from the long video sequence acquired by a digital line scan camera, few windows where the presence of bolts is expected. These windows are preprocessed according to a Haar transform and then provided to a multilayer perceptron neural classifiers (MLPNCs) which reveals the presence/absence of the fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in detecting missing bolts. A FPGA-based architecture performs these tasks in 13.29 /spl mu/s, allowing an on-the-fly analysis of a video sequence acquired up at 190 km/h.
doi_str_mv 10.1109/CAMP.2005.4
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1508189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1508189</ieee_id><sourcerecordid>1508189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-c5a3dded006a3a8a7bb74f5b27e7e206329791ddfb81cbcdf6ae290e0831e3183</originalsourceid><addsrcrecordid>eNotjE1LAzEUAAMiKHVPHr3kD2x9STab5LgUW4WKPSh4Ky_JWxvZD9lN0f57FZ3LXIZh7FrAUghwt6vmcbeUAHpZnbHCGQumdlpKrfUFK-b5HX6otKhAXbLXhq93m6b0OFPkOIVDyhTycSLejhPHYx57zCnwA33h2zhgx_3Y5ZlH-u3SOPA08AlT94kn3mMaMg04BLpi5y12MxX_XrCX9d3z6r7cPm0eVs22DKIyuQwaVYwUAWpUaNF4b6pWe2nIkIRaSWeciLH1VgQfYlsjSQcEVglSwqoFu_n7JiLaf0ypx-m0FxqssE59A5LtUHk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>De Ruvo, G. ; De Ruvo, P. ; Marino, F. ; Mastronardi, G. ; Mazzeo, P.L. ; Stella, E.</creator><creatorcontrib>De Ruvo, G. ; De Ruvo, P. ; Marino, F. ; Mastronardi, G. ; Mazzeo, P.L. ; Stella, E.</creatorcontrib><description>Rail inspection is a very important task in railway maintenance and it is periodically needed for preventing dangerous situations. Inspection is operated manually by trained human operator walking along the track searching for visual anomalies. This monitoring is unacceptable for slowness and lack of objectivity, because the results are related to the ability of the observer to recognize critical situations. The paper presents a prototypal FPGA-based architecture which automatically detects presence/absence of the fastening bolts that fix the rails to the sleepers. A simple predicting algorithm, exploiting the geometry of the railways, extracts, from the long video sequence acquired by a digital line scan camera, few windows where the presence of bolts is expected. These windows are preprocessed according to a Haar transform and then provided to a multilayer perceptron neural classifiers (MLPNCs) which reveals the presence/absence of the fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in detecting missing bolts. A FPGA-based architecture performs these tasks in 13.29 /spl mu/s, allowing an on-the-fly analysis of a video sequence acquired up at 190 km/h.</description><identifier>ISBN: 9780769522555</identifier><identifier>ISBN: 0769522556</identifier><identifier>DOI: 10.1109/CAMP.2005.4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Vision ; Computing Architectures ; Fasteners ; FPGA ; Humans ; Inspection ; Joining processes ; Legged locomotion ; Monitoring ; Pattern Recognition ; Prediction algorithms ; Prototypes ; Rail transportation ; Video sequences</subject><ispartof>Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05), 2005, p.219-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c147t-c5a3dded006a3a8a7bb74f5b27e7e206329791ddfb81cbcdf6ae290e0831e3183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1508189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1508189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Ruvo, G.</creatorcontrib><creatorcontrib>De Ruvo, P.</creatorcontrib><creatorcontrib>Marino, F.</creatorcontrib><creatorcontrib>Mastronardi, G.</creatorcontrib><creatorcontrib>Mazzeo, P.L.</creatorcontrib><creatorcontrib>Stella, E.</creatorcontrib><title>A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance</title><title>Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05)</title><addtitle>CAMP</addtitle><description>Rail inspection is a very important task in railway maintenance and it is periodically needed for preventing dangerous situations. Inspection is operated manually by trained human operator walking along the track searching for visual anomalies. This monitoring is unacceptable for slowness and lack of objectivity, because the results are related to the ability of the observer to recognize critical situations. The paper presents a prototypal FPGA-based architecture which automatically detects presence/absence of the fastening bolts that fix the rails to the sleepers. A simple predicting algorithm, exploiting the geometry of the railways, extracts, from the long video sequence acquired by a digital line scan camera, few windows where the presence of bolts is expected. These windows are preprocessed according to a Haar transform and then provided to a multilayer perceptron neural classifiers (MLPNCs) which reveals the presence/absence of the fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in detecting missing bolts. A FPGA-based architecture performs these tasks in 13.29 /spl mu/s, allowing an on-the-fly analysis of a video sequence acquired up at 190 km/h.</description><subject>Artificial Vision</subject><subject>Computing Architectures</subject><subject>Fasteners</subject><subject>FPGA</subject><subject>Humans</subject><subject>Inspection</subject><subject>Joining processes</subject><subject>Legged locomotion</subject><subject>Monitoring</subject><subject>Pattern Recognition</subject><subject>Prediction algorithms</subject><subject>Prototypes</subject><subject>Rail transportation</subject><subject>Video sequences</subject><isbn>9780769522555</isbn><isbn>0769522556</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1LAzEUAAMiKHVPHr3kD2x9STab5LgUW4WKPSh4Ky_JWxvZD9lN0f57FZ3LXIZh7FrAUghwt6vmcbeUAHpZnbHCGQumdlpKrfUFK-b5HX6otKhAXbLXhq93m6b0OFPkOIVDyhTycSLejhPHYx57zCnwA33h2zhgx_3Y5ZlH-u3SOPA08AlT94kn3mMaMg04BLpi5y12MxX_XrCX9d3z6r7cPm0eVs22DKIyuQwaVYwUAWpUaNF4b6pWe2nIkIRaSWeciLH1VgQfYlsjSQcEVglSwqoFu_n7JiLaf0ypx-m0FxqssE59A5LtUHk</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>De Ruvo, G.</creator><creator>De Ruvo, P.</creator><creator>Marino, F.</creator><creator>Mastronardi, G.</creator><creator>Mazzeo, P.L.</creator><creator>Stella, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance</title><author>De Ruvo, G. ; De Ruvo, P. ; Marino, F. ; Mastronardi, G. ; Mazzeo, P.L. ; Stella, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-c5a3dded006a3a8a7bb74f5b27e7e206329791ddfb81cbcdf6ae290e0831e3183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial Vision</topic><topic>Computing Architectures</topic><topic>Fasteners</topic><topic>FPGA</topic><topic>Humans</topic><topic>Inspection</topic><topic>Joining processes</topic><topic>Legged locomotion</topic><topic>Monitoring</topic><topic>Pattern Recognition</topic><topic>Prediction algorithms</topic><topic>Prototypes</topic><topic>Rail transportation</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>De Ruvo, G.</creatorcontrib><creatorcontrib>De Ruvo, P.</creatorcontrib><creatorcontrib>Marino, F.</creatorcontrib><creatorcontrib>Mastronardi, G.</creatorcontrib><creatorcontrib>Mazzeo, P.L.</creatorcontrib><creatorcontrib>Stella, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Ruvo, G.</au><au>De Ruvo, P.</au><au>Marino, F.</au><au>Mastronardi, G.</au><au>Mazzeo, P.L.</au><au>Stella, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance</atitle><btitle>Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05)</btitle><stitle>CAMP</stitle><date>2005</date><risdate>2005</risdate><spage>219</spage><epage>224</epage><pages>219-224</pages><isbn>9780769522555</isbn><isbn>0769522556</isbn><abstract>Rail inspection is a very important task in railway maintenance and it is periodically needed for preventing dangerous situations. Inspection is operated manually by trained human operator walking along the track searching for visual anomalies. This monitoring is unacceptable for slowness and lack of objectivity, because the results are related to the ability of the observer to recognize critical situations. The paper presents a prototypal FPGA-based architecture which automatically detects presence/absence of the fastening bolts that fix the rails to the sleepers. A simple predicting algorithm, exploiting the geometry of the railways, extracts, from the long video sequence acquired by a digital line scan camera, few windows where the presence of bolts is expected. These windows are preprocessed according to a Haar transform and then provided to a multilayer perceptron neural classifiers (MLPNCs) which reveals the presence/absence of the fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in detecting missing bolts. A FPGA-based architecture performs these tasks in 13.29 /spl mu/s, allowing an on-the-fly analysis of a video sequence acquired up at 190 km/h.</abstract><pub>IEEE</pub><doi>10.1109/CAMP.2005.4</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769522555
ispartof Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05), 2005, p.219-224
issn
language eng
recordid cdi_ieee_primary_1508189
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Vision
Computing Architectures
Fasteners
FPGA
Humans
Inspection
Joining processes
Legged locomotion
Monitoring
Pattern Recognition
Prediction algorithms
Prototypes
Rail transportation
Video sequences
title A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20FPGA-based%20architecture%20for%20automatic%20hexagonal%20bolts%20detection%20in%20railway%20maintenance&rft.btitle=Seventh%20International%20Workshop%20on%20Computer%20Architecture%20for%20Machine%20Perception%20(CAMP'05)&rft.au=De%20Ruvo,%20G.&rft.date=2005&rft.spage=219&rft.epage=224&rft.pages=219-224&rft.isbn=9780769522555&rft.isbn_list=0769522556&rft_id=info:doi/10.1109/CAMP.2005.4&rft_dat=%3Cieee_6IE%3E1508189%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1508189&rfr_iscdi=true