Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization

In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhengmao Ye, Yongmao Ye, Mohamadian, H., Kai Kang, Bhattacharya, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue
container_start_page 90
container_title
container_volume
creator Zhengmao Ye
Yongmao Ye
Mohamadian, H.
Kai Kang
Bhattacharya, P.
description In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots
doi_str_mv 10.1109/CCA.2005.1507106
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1507106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1507106</ieee_id><sourcerecordid>1507106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-d9dfb0059f48e561013c3f8f3b59b68fb50b024a0761fda9515214b51f05364e3</originalsourceid><addsrcrecordid>eNotkMtqwzAUREUfUCftvtCNfkDuvZKvbC2DadLSQKG06yDZUqviR7CdRfL1fXk1MHMYhmHsFiFFBHNflqtUAlCKBDmCPmOJpFwLJRHO2QLyApRRlOkLliAUJNAYecUW4_gFAHmOOmGv68PpdOQhNpMfYvfBbVfz8Oc9i9bbbuRVcxjnsO-4i33r61jZho-23TeeV592sNUvcbJT7LtrdhlsM_qbWZfsff3wVj6K7cvmqVxtRUSgSdSmDu5nvQlZ4UkjoKpUKIJyZJwugiNwIDMLucZQW0NIEjNHGICUzrxasrv_3ui93-2H2NrhuJu_UN-I4lEE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</creator><creatorcontrib>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</creatorcontrib><description>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</description><identifier>ISSN: 1085-1992</identifier><identifier>ISBN: 0780393546</identifier><identifier>ISBN: 9780780393547</identifier><identifier>EISSN: 2576-3210</identifier><identifier>DOI: 10.1109/CCA.2005.1507106</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Decision making ; Filtering ; Fuzzy logic ; Medical diagnosis ; Noise level ; Raman scattering ; Signal processing ; Signal to noise ratio ; Spectroscopy</subject><ispartof>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005, 2005, p.90-95</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1507106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1507106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhengmao Ye</creatorcontrib><creatorcontrib>Yongmao Ye</creatorcontrib><creatorcontrib>Mohamadian, H.</creatorcontrib><creatorcontrib>Kai Kang</creatorcontrib><creatorcontrib>Bhattacharya, P.</creatorcontrib><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><title>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005</title><addtitle>CCA</addtitle><description>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</description><subject>Calibration</subject><subject>Decision making</subject><subject>Filtering</subject><subject>Fuzzy logic</subject><subject>Medical diagnosis</subject><subject>Noise level</subject><subject>Raman scattering</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>0780393546</isbn><isbn>9780780393547</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtqwzAUREUfUCftvtCNfkDuvZKvbC2DadLSQKG06yDZUqviR7CdRfL1fXk1MHMYhmHsFiFFBHNflqtUAlCKBDmCPmOJpFwLJRHO2QLyApRRlOkLliAUJNAYecUW4_gFAHmOOmGv68PpdOQhNpMfYvfBbVfz8Oc9i9bbbuRVcxjnsO-4i33r61jZho-23TeeV592sNUvcbJT7LtrdhlsM_qbWZfsff3wVj6K7cvmqVxtRUSgSdSmDu5nvQlZ4UkjoKpUKIJyZJwugiNwIDMLucZQW0NIEjNHGICUzrxasrv_3ui93-2H2NrhuJu_UN-I4lEE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Zhengmao Ye</creator><creator>Yongmao Ye</creator><creator>Mohamadian, H.</creator><creator>Kai Kang</creator><creator>Bhattacharya, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><author>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-d9dfb0059f48e561013c3f8f3b59b68fb50b024a0761fda9515214b51f05364e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Calibration</topic><topic>Decision making</topic><topic>Filtering</topic><topic>Fuzzy logic</topic><topic>Medical diagnosis</topic><topic>Noise level</topic><topic>Raman scattering</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhengmao Ye</creatorcontrib><creatorcontrib>Yongmao Ye</creatorcontrib><creatorcontrib>Mohamadian, H.</creatorcontrib><creatorcontrib>Kai Kang</creatorcontrib><creatorcontrib>Bhattacharya, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhengmao Ye</au><au>Yongmao Ye</au><au>Mohamadian, H.</au><au>Kai Kang</au><au>Bhattacharya, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</atitle><btitle>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005</btitle><stitle>CCA</stitle><date>2005</date><risdate>2005</risdate><spage>90</spage><epage>95</epage><pages>90-95</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><isbn>0780393546</isbn><isbn>9780780393547</isbn><abstract>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</abstract><pub>IEEE</pub><doi>10.1109/CCA.2005.1507106</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1085-1992
ispartof Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005, 2005, p.90-95
issn 1085-1992
2576-3210
language eng
recordid cdi_ieee_primary_1507106
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Decision making
Filtering
Fuzzy logic
Medical diagnosis
Noise level
Raman scattering
Signal processing
Signal to noise ratio
Spectroscopy
title Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20filtering%20and%20fuzzy%20K-means%20clustering%20on%20biomedical%20sample%20characterization&rft.btitle=Proceedings%20of%202005%20IEEE%20Conference%20on%20Control%20Applications,%202005.%20CCA%202005&rft.au=Zhengmao%20Ye&rft.date=2005&rft.spage=90&rft.epage=95&rft.pages=90-95&rft.issn=1085-1992&rft.eissn=2576-3210&rft.isbn=0780393546&rft.isbn_list=9780780393547&rft_id=info:doi/10.1109/CCA.2005.1507106&rft_dat=%3Cieee_6IE%3E1507106%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1507106&rfr_iscdi=true