Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization
In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of no...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | |
container_start_page | 90 |
container_title | |
container_volume | |
creator | Zhengmao Ye Yongmao Ye Mohamadian, H. Kai Kang Bhattacharya, P. |
description | In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots |
doi_str_mv | 10.1109/CCA.2005.1507106 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1507106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1507106</ieee_id><sourcerecordid>1507106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-d9dfb0059f48e561013c3f8f3b59b68fb50b024a0761fda9515214b51f05364e3</originalsourceid><addsrcrecordid>eNotkMtqwzAUREUfUCftvtCNfkDuvZKvbC2DadLSQKG06yDZUqviR7CdRfL1fXk1MHMYhmHsFiFFBHNflqtUAlCKBDmCPmOJpFwLJRHO2QLyApRRlOkLliAUJNAYecUW4_gFAHmOOmGv68PpdOQhNpMfYvfBbVfz8Oc9i9bbbuRVcxjnsO-4i33r61jZho-23TeeV592sNUvcbJT7LtrdhlsM_qbWZfsff3wVj6K7cvmqVxtRUSgSdSmDu5nvQlZ4UkjoKpUKIJyZJwugiNwIDMLucZQW0NIEjNHGICUzrxasrv_3ui93-2H2NrhuJu_UN-I4lEE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</creator><creatorcontrib>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</creatorcontrib><description>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</description><identifier>ISSN: 1085-1992</identifier><identifier>ISBN: 0780393546</identifier><identifier>ISBN: 9780780393547</identifier><identifier>EISSN: 2576-3210</identifier><identifier>DOI: 10.1109/CCA.2005.1507106</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Decision making ; Filtering ; Fuzzy logic ; Medical diagnosis ; Noise level ; Raman scattering ; Signal processing ; Signal to noise ratio ; Spectroscopy</subject><ispartof>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005, 2005, p.90-95</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1507106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1507106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhengmao Ye</creatorcontrib><creatorcontrib>Yongmao Ye</creatorcontrib><creatorcontrib>Mohamadian, H.</creatorcontrib><creatorcontrib>Kai Kang</creatorcontrib><creatorcontrib>Bhattacharya, P.</creatorcontrib><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><title>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005</title><addtitle>CCA</addtitle><description>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</description><subject>Calibration</subject><subject>Decision making</subject><subject>Filtering</subject><subject>Fuzzy logic</subject><subject>Medical diagnosis</subject><subject>Noise level</subject><subject>Raman scattering</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>0780393546</isbn><isbn>9780780393547</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtqwzAUREUfUCftvtCNfkDuvZKvbC2DadLSQKG06yDZUqviR7CdRfL1fXk1MHMYhmHsFiFFBHNflqtUAlCKBDmCPmOJpFwLJRHO2QLyApRRlOkLliAUJNAYecUW4_gFAHmOOmGv68PpdOQhNpMfYvfBbVfz8Oc9i9bbbuRVcxjnsO-4i33r61jZho-23TeeV592sNUvcbJT7LtrdhlsM_qbWZfsff3wVj6K7cvmqVxtRUSgSdSmDu5nvQlZ4UkjoKpUKIJyZJwugiNwIDMLucZQW0NIEjNHGICUzrxasrv_3ui93-2H2NrhuJu_UN-I4lEE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Zhengmao Ye</creator><creator>Yongmao Ye</creator><creator>Mohamadian, H.</creator><creator>Kai Kang</creator><creator>Bhattacharya, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</title><author>Zhengmao Ye ; Yongmao Ye ; Mohamadian, H. ; Kai Kang ; Bhattacharya, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-d9dfb0059f48e561013c3f8f3b59b68fb50b024a0761fda9515214b51f05364e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Calibration</topic><topic>Decision making</topic><topic>Filtering</topic><topic>Fuzzy logic</topic><topic>Medical diagnosis</topic><topic>Noise level</topic><topic>Raman scattering</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhengmao Ye</creatorcontrib><creatorcontrib>Yongmao Ye</creatorcontrib><creatorcontrib>Mohamadian, H.</creatorcontrib><creatorcontrib>Kai Kang</creatorcontrib><creatorcontrib>Bhattacharya, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhengmao Ye</au><au>Yongmao Ye</au><au>Mohamadian, H.</au><au>Kai Kang</au><au>Bhattacharya, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization</atitle><btitle>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005</btitle><stitle>CCA</stitle><date>2005</date><risdate>2005</risdate><spage>90</spage><epage>95</epage><pages>90-95</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><isbn>0780393546</isbn><isbn>9780780393547</isbn><abstract>In this article, fuzzy logic approach is proposed for sample differentiation using Raman spectroscopy in order to characterize various biomedical samples for decision-making and medical diagnosis. Raman spectra are relatively weak signals whose features are inevitably affected by various types of noises during its calibration process. These noises must be eliminated to an acceptable level. Fuzzy logic method has been widely used to solve uncertainty, imprecision and vague phenomena. As a result, fuzzy filtering is employed for noise filtering so as to enhance the signal to noise ratio. Any raw Raman spectrum has to be pre-processed and normalized prior to further analysis. The resulting intrinsic Raman spectra can be classified into different categories via fuzzy k-means clustering, which is applicable for decision making. A complete fuzzy logic approach is then formulated to characterize several biomedical samples. The long-term research objective is to create a realtime approach for sample analysis using a Raman spectrometer directly mounted at the end-effector of medical robots</abstract><pub>IEEE</pub><doi>10.1109/CCA.2005.1507106</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1085-1992 |
ispartof | Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005, 2005, p.90-95 |
issn | 1085-1992 2576-3210 |
language | eng |
recordid | cdi_ieee_primary_1507106 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Calibration Decision making Filtering Fuzzy logic Medical diagnosis Noise level Raman scattering Signal processing Signal to noise ratio Spectroscopy |
title | Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20filtering%20and%20fuzzy%20K-means%20clustering%20on%20biomedical%20sample%20characterization&rft.btitle=Proceedings%20of%202005%20IEEE%20Conference%20on%20Control%20Applications,%202005.%20CCA%202005&rft.au=Zhengmao%20Ye&rft.date=2005&rft.spage=90&rft.epage=95&rft.pages=90-95&rft.issn=1085-1992&rft.eissn=2576-3210&rft.isbn=0780393546&rft.isbn_list=9780780393547&rft_id=info:doi/10.1109/CCA.2005.1507106&rft_dat=%3Cieee_6IE%3E1507106%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1507106&rfr_iscdi=true |