On the ill-posedness of certain vehicular platoon control problems
We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the pla...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2005-09, Vol.50 (9), p.1307-1321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 9 |
container_start_page | 1307 |
container_title | IEEE transactions on automatic control |
container_volume | 50 |
creator | Jovanovic, M.R. Bamieh, B. |
description | We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones. |
doi_str_mv | 10.1109/TAC.2005.854584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1506938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1506938</ieee_id><sourcerecordid>28989273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</originalsourceid><addsrcrecordid>eNqNkD1rwzAQhkVpoenH3KGLKbSbE0mWZGlMQ78gkCWdhSyfiYNipZJd6L-vggOBTp0Occ-9d3oQuiN4SghWs_V8MaUY86nkjEt2hiaEc5lTTotzNMGYyFxRKS7RVYzb9BSMkQl6XnVZv4GsdS7f-wh1BzFmvskshN60XfYNm9YOzoRs70zvfZdZ3_XBu2wffOVgF2_QRWNchNtjvUafry_rxXu-XL19LObL3DIm-pwZYYUiNWmKSgpaskIWFnNZVQ3jmBjFoALDjQFZ2lIRIesKqiIBNRBa4eIaPY25afHXALHXuzZacM504IeoqVRS0bL4B4i5IkQk8OEPuPVD6NIntExhNF1RJmg2Qjb4GAM0eh_anQk_mmB9MK-TeX0wr0fzaeLxGGuiNa4JprNtPI2VabcQJHH3I9cCwKnNsVDJzS84RIsv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889827917</pqid></control><display><type>article</type><title>On the ill-posedness of certain vehicular platoon control problems</title><source>IEEE Electronic Library (IEL)</source><creator>Jovanovic, M.R. ; Bamieh, B.</creator><creatorcontrib>Jovanovic, M.R. ; Bamieh, B.</creatorcontrib><description>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.854584</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Degradation ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feedback ; Mechanical engineering ; Optimal control ; Performance analysis ; Regulators ; Size control ; Space vehicles ; spatially invariant systems ; Toeplitz and circulant matrices ; vehicular platoons</subject><ispartof>IEEE transactions on automatic control, 2005-09, Vol.50 (9), p.1307-1321</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</citedby><cites>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1506938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1506938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17116661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jovanovic, M.R.</creatorcontrib><creatorcontrib>Bamieh, B.</creatorcontrib><title>On the ill-posedness of certain vehicular platoon control problems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Degradation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Mechanical engineering</subject><subject>Optimal control</subject><subject>Performance analysis</subject><subject>Regulators</subject><subject>Size control</subject><subject>Space vehicles</subject><subject>spatially invariant systems</subject><subject>Toeplitz and circulant matrices</subject><subject>vehicular platoons</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkD1rwzAQhkVpoenH3KGLKbSbE0mWZGlMQ78gkCWdhSyfiYNipZJd6L-vggOBTp0Occ-9d3oQuiN4SghWs_V8MaUY86nkjEt2hiaEc5lTTotzNMGYyFxRKS7RVYzb9BSMkQl6XnVZv4GsdS7f-wh1BzFmvskshN60XfYNm9YOzoRs70zvfZdZ3_XBu2wffOVgF2_QRWNchNtjvUafry_rxXu-XL19LObL3DIm-pwZYYUiNWmKSgpaskIWFnNZVQ3jmBjFoALDjQFZ2lIRIesKqiIBNRBa4eIaPY25afHXALHXuzZacM504IeoqVRS0bL4B4i5IkQk8OEPuPVD6NIntExhNF1RJmg2Qjb4GAM0eh_anQk_mmB9MK-TeX0wr0fzaeLxGGuiNa4JprNtPI2VabcQJHH3I9cCwKnNsVDJzS84RIsv</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Jovanovic, M.R.</creator><creator>Bamieh, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050901</creationdate><title>On the ill-posedness of certain vehicular platoon control problems</title><author>Jovanovic, M.R. ; Bamieh, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Degradation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Mechanical engineering</topic><topic>Optimal control</topic><topic>Performance analysis</topic><topic>Regulators</topic><topic>Size control</topic><topic>Space vehicles</topic><topic>spatially invariant systems</topic><topic>Toeplitz and circulant matrices</topic><topic>vehicular platoons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jovanovic, M.R.</creatorcontrib><creatorcontrib>Bamieh, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jovanovic, M.R.</au><au>Bamieh, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ill-posedness of certain vehicular platoon control problems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>50</volume><issue>9</issue><spage>1307</spage><epage>1321</epage><pages>1307-1321</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.854584</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2005-09, Vol.50 (9), p.1307-1321 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_1506938 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control systems Control theory. Systems Degradation Eigenvalues and eigenfunctions Exact sciences and technology Feedback Mechanical engineering Optimal control Performance analysis Regulators Size control Space vehicles spatially invariant systems Toeplitz and circulant matrices vehicular platoons |
title | On the ill-posedness of certain vehicular platoon control problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ill-posedness%20of%20certain%20vehicular%20platoon%20control%20problems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jovanovic,%20M.R.&rft.date=2005-09-01&rft.volume=50&rft.issue=9&rft.spage=1307&rft.epage=1321&rft.pages=1307-1321&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.854584&rft_dat=%3Cproquest_RIE%3E28989273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889827917&rft_id=info:pmid/&rft_ieee_id=1506938&rfr_iscdi=true |