On the ill-posedness of certain vehicular platoon control problems

We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2005-09, Vol.50 (9), p.1307-1321
Hauptverfasser: Jovanovic, M.R., Bamieh, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 9
container_start_page 1307
container_title IEEE transactions on automatic control
container_volume 50
creator Jovanovic, M.R.
Bamieh, B.
description We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.
doi_str_mv 10.1109/TAC.2005.854584
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1506938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1506938</ieee_id><sourcerecordid>28989273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</originalsourceid><addsrcrecordid>eNqNkD1rwzAQhkVpoenH3KGLKbSbE0mWZGlMQ78gkCWdhSyfiYNipZJd6L-vggOBTp0Occ-9d3oQuiN4SghWs_V8MaUY86nkjEt2hiaEc5lTTotzNMGYyFxRKS7RVYzb9BSMkQl6XnVZv4GsdS7f-wh1BzFmvskshN60XfYNm9YOzoRs70zvfZdZ3_XBu2wffOVgF2_QRWNchNtjvUafry_rxXu-XL19LObL3DIm-pwZYYUiNWmKSgpaskIWFnNZVQ3jmBjFoALDjQFZ2lIRIesKqiIBNRBa4eIaPY25afHXALHXuzZacM504IeoqVRS0bL4B4i5IkQk8OEPuPVD6NIntExhNF1RJmg2Qjb4GAM0eh_anQk_mmB9MK-TeX0wr0fzaeLxGGuiNa4JprNtPI2VabcQJHH3I9cCwKnNsVDJzS84RIsv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889827917</pqid></control><display><type>article</type><title>On the ill-posedness of certain vehicular platoon control problems</title><source>IEEE Electronic Library (IEL)</source><creator>Jovanovic, M.R. ; Bamieh, B.</creator><creatorcontrib>Jovanovic, M.R. ; Bamieh, B.</creatorcontrib><description>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.854584</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Degradation ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feedback ; Mechanical engineering ; Optimal control ; Performance analysis ; Regulators ; Size control ; Space vehicles ; spatially invariant systems ; Toeplitz and circulant matrices ; vehicular platoons</subject><ispartof>IEEE transactions on automatic control, 2005-09, Vol.50 (9), p.1307-1321</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</citedby><cites>FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1506938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1506938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17116661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jovanovic, M.R.</creatorcontrib><creatorcontrib>Bamieh, B.</creatorcontrib><title>On the ill-posedness of certain vehicular platoon control problems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Degradation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Mechanical engineering</subject><subject>Optimal control</subject><subject>Performance analysis</subject><subject>Regulators</subject><subject>Size control</subject><subject>Space vehicles</subject><subject>spatially invariant systems</subject><subject>Toeplitz and circulant matrices</subject><subject>vehicular platoons</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkD1rwzAQhkVpoenH3KGLKbSbE0mWZGlMQ78gkCWdhSyfiYNipZJd6L-vggOBTp0Occ-9d3oQuiN4SghWs_V8MaUY86nkjEt2hiaEc5lTTotzNMGYyFxRKS7RVYzb9BSMkQl6XnVZv4GsdS7f-wh1BzFmvskshN60XfYNm9YOzoRs70zvfZdZ3_XBu2wffOVgF2_QRWNchNtjvUafry_rxXu-XL19LObL3DIm-pwZYYUiNWmKSgpaskIWFnNZVQ3jmBjFoALDjQFZ2lIRIesKqiIBNRBa4eIaPY25afHXALHXuzZacM504IeoqVRS0bL4B4i5IkQk8OEPuPVD6NIntExhNF1RJmg2Qjb4GAM0eh_anQk_mmB9MK-TeX0wr0fzaeLxGGuiNa4JprNtPI2VabcQJHH3I9cCwKnNsVDJzS84RIsv</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Jovanovic, M.R.</creator><creator>Bamieh, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050901</creationdate><title>On the ill-posedness of certain vehicular platoon control problems</title><author>Jovanovic, M.R. ; Bamieh, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4a6c691d1f3b86274383c058bbf4501a94ebea5aae87c79168dbeb358bde12b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Degradation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Mechanical engineering</topic><topic>Optimal control</topic><topic>Performance analysis</topic><topic>Regulators</topic><topic>Size control</topic><topic>Space vehicles</topic><topic>spatially invariant systems</topic><topic>Toeplitz and circulant matrices</topic><topic>vehicular platoons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jovanovic, M.R.</creatorcontrib><creatorcontrib>Bamieh, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jovanovic, M.R.</au><au>Bamieh, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ill-posedness of certain vehicular platoon control problems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>50</volume><issue>9</issue><spage>1307</spage><epage>1321</epage><pages>1307-1321</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We revisit the vehicular platoon control problems formulated by Levine and Athans and Melzer and Kuo. We show that in each case, these formulations are effectively ill-posed. Specifically, we demonstrate that in the first formulation, the system's stabilizability degrades as the size of the platoon increases, and that the system loses stabilizability in the limit of an infinite number of vehicles. We show that in the LQR formulation of Melzer and Kuo, the performance index is not detectable, leading to nonstabilizing optimal feedbacks. Effectively, these closed-loop systems do not have a uniform bound on the time constants of all vehicles. For the case of infinite platoons, these difficulties are easily exhibited using the theory of spatially invariant systems. We argue that the infinite case is a useful paradigm to understand large platoons. To this end, we illustrate how stabilizability and detectability degrade as functions of a finite platoon size, implying that the infinite case is an idealized limit of the large, but finite case. Finally, we show how to pose H/sub 2/ and H/sub /spl infin// versions of these problems where the detectability and stabilizability issues are easily seen, and suggest a well-posed alternative formulation based on penalizing absolute positions errors in addition to relative ones.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.854584</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2005-09, Vol.50 (9), p.1307-1321
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_1506938
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Degradation
Eigenvalues and eigenfunctions
Exact sciences and technology
Feedback
Mechanical engineering
Optimal control
Performance analysis
Regulators
Size control
Space vehicles
spatially invariant systems
Toeplitz and circulant matrices
vehicular platoons
title On the ill-posedness of certain vehicular platoon control problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ill-posedness%20of%20certain%20vehicular%20platoon%20control%20problems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jovanovic,%20M.R.&rft.date=2005-09-01&rft.volume=50&rft.issue=9&rft.spage=1307&rft.epage=1321&rft.pages=1307-1321&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.854584&rft_dat=%3Cproquest_RIE%3E28989273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889827917&rft_id=info:pmid/&rft_ieee_id=1506938&rfr_iscdi=true