A new 40-nm SONOS structure based on backside trapping for nanoscale memories

Silicon-on-nothing (SON) devices have been analyzed for the first time in view of nanoscaled nonvolatile memories (NVM) applications. Two reliable steady states have been demonstrated using backside charge trapping in the nitride layer under the channel as a memory effect in a 40-nm gate-length pMOS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2005-09, Vol.4 (5), p.581-587
Hauptverfasser: Ranica, R., Villaret, A., Mazoyer, P., Monfray, S., Chanemougame, D., Masson, P., Regnier, A., Dray, C.N., Bez, R., Skotnicki, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 5
container_start_page 581
container_title IEEE transactions on nanotechnology
container_volume 4
creator Ranica, R.
Villaret, A.
Mazoyer, P.
Monfray, S.
Chanemougame, D.
Masson, P.
Regnier, A.
Dray, C.N.
Bez, R.
Skotnicki, T.
description Silicon-on-nothing (SON) devices have been analyzed for the first time in view of nanoscaled nonvolatile memories (NVM) applications. Two reliable steady states have been demonstrated using backside charge trapping in the nitride layer under the channel as a memory effect in a 40-nm gate-length pMOS silicon-oxide-nitride-oxide-silicon device realized with SON technology. Low voltages (/spl sim/3 V) are required for memory operations and a threshold voltage memory window superior to 0.5 V can be achieved. Charge loss mechanism is analyzed and very promising data retention behavior is demonstrated at 125/spl deg/C. This architecture, with a storage node localized under the channel, is exactly the same device that can operate as a high-performance transistor at low voltages and as an NVM cell at higher voltage ranges. A total compatibility between logic and the embedded NVM process is thus insured. In view of high-density memories, the feasibility of 2-bit storage in a longer SON device is also demonstrated.
doi_str_mv 10.1109/TNANO.2005.851416
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1504717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1504717</ieee_id><sourcerecordid>28040230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-5e71edb5688b4ae739f0701cb6d5e66fffe7c52bfb878670fc50d00286b9bd9d3</originalsourceid><addsrcrecordid>eNqNkU-L1EAQxYMouK5-APHSCLqnjFWd_nscFnWFdeawK3hrOp1qyTrpjN0J4rc3cRYWPIinelC_elTVq6qXCBtEsO9ud9vdfsMB5MZIFKgeVWdoBdYARj5etGxUjVx-fVo9K-UOALWS5qz6vGWJfjIBdRrYzX63v2FlynOY5kys9YU6NqZFhO-l74hN2R-PffrG4phZ8mkswR-IDTSMuafyvHoS_aHQi_t6Xn358P728qq-3n_8dLm9roMwfKolaaSulcqYVnjSjY2gAUOrOklKxRhJB8nb2BptlIYYJHQA3KjWtp3tmvPq4uR7zOOPmcrkhr4EOhx8onEuzljFkRsBC_n2nyQ3KJRSzX-AIIA3q-Prv8C7cc5pOddZ5KAtR7FAeIJCHkvJFN0x94PPvxyCWwNzfwJza2DuFNgy8-be2K9fjdmn0JeHQY2IjV03fXXieiJ6aEsQGnXzG_e6nMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912079214</pqid></control><display><type>article</type><title>A new 40-nm SONOS structure based on backside trapping for nanoscale memories</title><source>IEEE Electronic Library (IEL)</source><creator>Ranica, R. ; Villaret, A. ; Mazoyer, P. ; Monfray, S. ; Chanemougame, D. ; Masson, P. ; Regnier, A. ; Dray, C.N. ; Bez, R. ; Skotnicki, T.</creator><creatorcontrib>Ranica, R. ; Villaret, A. ; Mazoyer, P. ; Monfray, S. ; Chanemougame, D. ; Masson, P. ; Regnier, A. ; Dray, C.N. ; Bez, R. ; Skotnicki, T.</creatorcontrib><description>Silicon-on-nothing (SON) devices have been analyzed for the first time in view of nanoscaled nonvolatile memories (NVM) applications. Two reliable steady states have been demonstrated using backside charge trapping in the nitride layer under the channel as a memory effect in a 40-nm gate-length pMOS silicon-oxide-nitride-oxide-silicon device realized with SON technology. Low voltages (/spl sim/3 V) are required for memory operations and a threshold voltage memory window superior to 0.5 V can be achieved. Charge loss mechanism is analyzed and very promising data retention behavior is demonstrated at 125/spl deg/C. This architecture, with a storage node localized under the channel, is exactly the same device that can operate as a high-performance transistor at low voltages and as an NVM cell at higher voltage ranges. A total compatibility between logic and the embedded NVM process is thus insured. In view of high-density memories, the feasibility of 2-bit storage in a longer SON device is also demonstrated.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2005.851416</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Charge ; Charge trapping ; CMOS integrated memories ; CMOS logic circuits ; Devices ; Electronics ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Logic arrays ; Logic devices ; Low voltage ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; Nanoscale devices ; Nanostructure ; nitride traps ; nonvolatile memories (NVMs) ; Nonvolatile memory ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon-oxide-nitride-oxide-silicon (SONOS) memory ; SONOS devices ; Steady-state ; Threshold voltage ; Trapping</subject><ispartof>IEEE transactions on nanotechnology, 2005-09, Vol.4 (5), p.581-587</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-5e71edb5688b4ae739f0701cb6d5e66fffe7c52bfb878670fc50d00286b9bd9d3</citedby><cites>FETCH-LOGICAL-c482t-5e71edb5688b4ae739f0701cb6d5e66fffe7c52bfb878670fc50d00286b9bd9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1504717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1504717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17111393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranica, R.</creatorcontrib><creatorcontrib>Villaret, A.</creatorcontrib><creatorcontrib>Mazoyer, P.</creatorcontrib><creatorcontrib>Monfray, S.</creatorcontrib><creatorcontrib>Chanemougame, D.</creatorcontrib><creatorcontrib>Masson, P.</creatorcontrib><creatorcontrib>Regnier, A.</creatorcontrib><creatorcontrib>Dray, C.N.</creatorcontrib><creatorcontrib>Bez, R.</creatorcontrib><creatorcontrib>Skotnicki, T.</creatorcontrib><title>A new 40-nm SONOS structure based on backside trapping for nanoscale memories</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Silicon-on-nothing (SON) devices have been analyzed for the first time in view of nanoscaled nonvolatile memories (NVM) applications. Two reliable steady states have been demonstrated using backside charge trapping in the nitride layer under the channel as a memory effect in a 40-nm gate-length pMOS silicon-oxide-nitride-oxide-silicon device realized with SON technology. Low voltages (/spl sim/3 V) are required for memory operations and a threshold voltage memory window superior to 0.5 V can be achieved. Charge loss mechanism is analyzed and very promising data retention behavior is demonstrated at 125/spl deg/C. This architecture, with a storage node localized under the channel, is exactly the same device that can operate as a high-performance transistor at low voltages and as an NVM cell at higher voltage ranges. A total compatibility between logic and the embedded NVM process is thus insured. In view of high-density memories, the feasibility of 2-bit storage in a longer SON device is also demonstrated.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Charge</subject><subject>Charge trapping</subject><subject>CMOS integrated memories</subject><subject>CMOS logic circuits</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Logic arrays</subject><subject>Logic devices</subject><subject>Low voltage</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>nitride traps</subject><subject>nonvolatile memories (NVMs)</subject><subject>Nonvolatile memory</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon-oxide-nitride-oxide-silicon (SONOS) memory</subject><subject>SONOS devices</subject><subject>Steady-state</subject><subject>Threshold voltage</subject><subject>Trapping</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU-L1EAQxYMouK5-APHSCLqnjFWd_nscFnWFdeawK3hrOp1qyTrpjN0J4rc3cRYWPIinelC_elTVq6qXCBtEsO9ud9vdfsMB5MZIFKgeVWdoBdYARj5etGxUjVx-fVo9K-UOALWS5qz6vGWJfjIBdRrYzX63v2FlynOY5kys9YU6NqZFhO-l74hN2R-PffrG4phZ8mkswR-IDTSMuafyvHoS_aHQi_t6Xn358P728qq-3n_8dLm9roMwfKolaaSulcqYVnjSjY2gAUOrOklKxRhJB8nb2BptlIYYJHQA3KjWtp3tmvPq4uR7zOOPmcrkhr4EOhx8onEuzljFkRsBC_n2nyQ3KJRSzX-AIIA3q-Prv8C7cc5pOddZ5KAtR7FAeIJCHkvJFN0x94PPvxyCWwNzfwJza2DuFNgy8-be2K9fjdmn0JeHQY2IjV03fXXieiJ6aEsQGnXzG_e6nMw</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Ranica, R.</creator><creator>Villaret, A.</creator><creator>Mazoyer, P.</creator><creator>Monfray, S.</creator><creator>Chanemougame, D.</creator><creator>Masson, P.</creator><creator>Regnier, A.</creator><creator>Dray, C.N.</creator><creator>Bez, R.</creator><creator>Skotnicki, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050901</creationdate><title>A new 40-nm SONOS structure based on backside trapping for nanoscale memories</title><author>Ranica, R. ; Villaret, A. ; Mazoyer, P. ; Monfray, S. ; Chanemougame, D. ; Masson, P. ; Regnier, A. ; Dray, C.N. ; Bez, R. ; Skotnicki, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-5e71edb5688b4ae739f0701cb6d5e66fffe7c52bfb878670fc50d00286b9bd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Charge</topic><topic>Charge trapping</topic><topic>CMOS integrated memories</topic><topic>CMOS logic circuits</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Logic arrays</topic><topic>Logic devices</topic><topic>Low voltage</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>nitride traps</topic><topic>nonvolatile memories (NVMs)</topic><topic>Nonvolatile memory</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon-oxide-nitride-oxide-silicon (SONOS) memory</topic><topic>SONOS devices</topic><topic>Steady-state</topic><topic>Threshold voltage</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranica, R.</creatorcontrib><creatorcontrib>Villaret, A.</creatorcontrib><creatorcontrib>Mazoyer, P.</creatorcontrib><creatorcontrib>Monfray, S.</creatorcontrib><creatorcontrib>Chanemougame, D.</creatorcontrib><creatorcontrib>Masson, P.</creatorcontrib><creatorcontrib>Regnier, A.</creatorcontrib><creatorcontrib>Dray, C.N.</creatorcontrib><creatorcontrib>Bez, R.</creatorcontrib><creatorcontrib>Skotnicki, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranica, R.</au><au>Villaret, A.</au><au>Mazoyer, P.</au><au>Monfray, S.</au><au>Chanemougame, D.</au><au>Masson, P.</au><au>Regnier, A.</au><au>Dray, C.N.</au><au>Bez, R.</au><au>Skotnicki, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new 40-nm SONOS structure based on backside trapping for nanoscale memories</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>4</volume><issue>5</issue><spage>581</spage><epage>587</epage><pages>581-587</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Silicon-on-nothing (SON) devices have been analyzed for the first time in view of nanoscaled nonvolatile memories (NVM) applications. Two reliable steady states have been demonstrated using backside charge trapping in the nitride layer under the channel as a memory effect in a 40-nm gate-length pMOS silicon-oxide-nitride-oxide-silicon device realized with SON technology. Low voltages (/spl sim/3 V) are required for memory operations and a threshold voltage memory window superior to 0.5 V can be achieved. Charge loss mechanism is analyzed and very promising data retention behavior is demonstrated at 125/spl deg/C. This architecture, with a storage node localized under the channel, is exactly the same device that can operate as a high-performance transistor at low voltages and as an NVM cell at higher voltage ranges. A total compatibility between logic and the embedded NVM process is thus insured. In view of high-density memories, the feasibility of 2-bit storage in a longer SON device is also demonstrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2005.851416</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2005-09, Vol.4 (5), p.581-587
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_1504717
source IEEE Electronic Library (IEL)
subjects Applied sciences
Channels
Charge
Charge trapping
CMOS integrated memories
CMOS logic circuits
Devices
Electronics
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
Logic arrays
Logic devices
Low voltage
Molecular electronics, nanoelectronics
Nanocomposites
Nanomaterials
Nanoscale devices
Nanostructure
nitride traps
nonvolatile memories (NVMs)
Nonvolatile memory
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
silicon-oxide-nitride-oxide-silicon (SONOS) memory
SONOS devices
Steady-state
Threshold voltage
Trapping
title A new 40-nm SONOS structure based on backside trapping for nanoscale memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%2040-nm%20SONOS%20structure%20based%20on%20backside%20trapping%20for%20nanoscale%20memories&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Ranica,%20R.&rft.date=2005-09-01&rft.volume=4&rft.issue=5&rft.spage=581&rft.epage=587&rft.pages=581-587&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2005.851416&rft_dat=%3Cproquest_RIE%3E28040230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912079214&rft_id=info:pmid/&rft_ieee_id=1504717&rfr_iscdi=true