Minimum BER power allocation for MIMO spatial multiplexing systems

Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neng Wang, Blostein, S.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2286 Vol. 4
container_issue
container_start_page 2282
container_title
container_volume 4
creator Neng Wang
Blostein, S.D.
description Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.
doi_str_mv 10.1109/ICC.2005.1494742
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1494742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1494742</ieee_id><sourcerecordid>1494742</sourcerecordid><originalsourceid>FETCH-LOGICAL-g146t-2b0a84995ffaa3c1d373f4ade1bf83e0b735f3df190ade66af7d6f8f93167dd3</originalsourceid><addsrcrecordid>eNotj8lqwzAYhEUXaJL2XuhFL2BX8i9rOTYmbQ0xgZJ7kCMpqMgLlkObt6-gOQ18wwwzCD1TklNK1GtdVXlBSJlTpphgxQ1aUAUyo1LCLVoSIQnIBMRdMsqSZMCJeEDLGL9TqlBAF2jd-N535w6vN194HH7shHUIw1HPfuixGybc1M0OxzEBHXB3DrMfg_31_QnHS5xtFx_RvdMh2qerrtD-fbOvPrPt7qOu3rbZiTI-Z0VLtGRKlc5pDUdqQIBj2ljaOgmWtAJKB8ZRRRLkXDthuJMuzeTCGFihl_9ab609jJPv9HQ5XK_DH2B0S8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neng Wang ; Blostein, S.D.</creator><creatorcontrib>Neng Wang ; Blostein, S.D.</creatorcontrib><description>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 0780389387</identifier><identifier>ISBN: 9780780389380</identifier><identifier>EISSN: 1938-1883</identifier><identifier>DOI: 10.1109/ICC.2005.1494742</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Decoding ; Error analysis ; Feedback ; Interference cancellation ; MIMO ; Performance analysis ; Receiving antennas ; Signal to noise ratio ; Silicon carbide</subject><ispartof>IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.4, p.2282-2286 Vol. 4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1494742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1494742$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neng Wang</creatorcontrib><creatorcontrib>Blostein, S.D.</creatorcontrib><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><title>IEEE International Conference on Communications, 2005. ICC 2005. 2005</title><addtitle>ICC</addtitle><description>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</description><subject>Bit error rate</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>Feedback</subject><subject>Interference cancellation</subject><subject>MIMO</subject><subject>Performance analysis</subject><subject>Receiving antennas</subject><subject>Signal to noise ratio</subject><subject>Silicon carbide</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>0780389387</isbn><isbn>9780780389380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqwzAYhEUXaJL2XuhFL2BX8i9rOTYmbQ0xgZJ7kCMpqMgLlkObt6-gOQ18wwwzCD1TklNK1GtdVXlBSJlTpphgxQ1aUAUyo1LCLVoSIQnIBMRdMsqSZMCJeEDLGL9TqlBAF2jd-N535w6vN194HH7shHUIw1HPfuixGybc1M0OxzEBHXB3DrMfg_31_QnHS5xtFx_RvdMh2qerrtD-fbOvPrPt7qOu3rbZiTI-Z0VLtGRKlc5pDUdqQIBj2ljaOgmWtAJKB8ZRRRLkXDthuJMuzeTCGFihl_9ab609jJPv9HQ5XK_DH2B0S8g</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Neng Wang</creator><creator>Blostein, S.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><author>Neng Wang ; Blostein, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g146t-2b0a84995ffaa3c1d373f4ade1bf83e0b735f3df190ade66af7d6f8f93167dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bit error rate</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>Feedback</topic><topic>Interference cancellation</topic><topic>MIMO</topic><topic>Performance analysis</topic><topic>Receiving antennas</topic><topic>Signal to noise ratio</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Neng Wang</creatorcontrib><creatorcontrib>Blostein, S.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neng Wang</au><au>Blostein, S.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum BER power allocation for MIMO spatial multiplexing systems</atitle><btitle>IEEE International Conference on Communications, 2005. ICC 2005. 2005</btitle><stitle>ICC</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>2282</spage><epage>2286 Vol. 4</epage><pages>2282-2286 Vol. 4</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>0780389387</isbn><isbn>9780780389380</isbn><abstract>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2005.1494742</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.4, p.2282-2286 Vol. 4
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_1494742
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit error rate
Decoding
Error analysis
Feedback
Interference cancellation
MIMO
Performance analysis
Receiving antennas
Signal to noise ratio
Silicon carbide
title Minimum BER power allocation for MIMO spatial multiplexing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20BER%20power%20allocation%20for%20MIMO%20spatial%20multiplexing%20systems&rft.btitle=IEEE%20International%20Conference%20on%20Communications,%202005.%20ICC%202005.%202005&rft.au=Neng%20Wang&rft.date=2005&rft.volume=4&rft.spage=2282&rft.epage=2286%20Vol.%204&rft.pages=2282-2286%20Vol.%204&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=0780389387&rft.isbn_list=9780780389380&rft_id=info:doi/10.1109/ICC.2005.1494742&rft_dat=%3Cieee_6IE%3E1494742%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1494742&rfr_iscdi=true