Minimum BER power allocation for MIMO spatial multiplexing systems
Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interf...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2286 Vol. 4 |
---|---|
container_issue | |
container_start_page | 2282 |
container_title | |
container_volume | 4 |
creator | Neng Wang Blostein, S.D. |
description | Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance. |
doi_str_mv | 10.1109/ICC.2005.1494742 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1494742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1494742</ieee_id><sourcerecordid>1494742</sourcerecordid><originalsourceid>FETCH-LOGICAL-g146t-2b0a84995ffaa3c1d373f4ade1bf83e0b735f3df190ade66af7d6f8f93167dd3</originalsourceid><addsrcrecordid>eNotj8lqwzAYhEUXaJL2XuhFL2BX8i9rOTYmbQ0xgZJ7kCMpqMgLlkObt6-gOQ18wwwzCD1TklNK1GtdVXlBSJlTpphgxQ1aUAUyo1LCLVoSIQnIBMRdMsqSZMCJeEDLGL9TqlBAF2jd-N535w6vN194HH7shHUIw1HPfuixGybc1M0OxzEBHXB3DrMfg_31_QnHS5xtFx_RvdMh2qerrtD-fbOvPrPt7qOu3rbZiTI-Z0VLtGRKlc5pDUdqQIBj2ljaOgmWtAJKB8ZRRRLkXDthuJMuzeTCGFihl_9ab609jJPv9HQ5XK_DH2B0S8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neng Wang ; Blostein, S.D.</creator><creatorcontrib>Neng Wang ; Blostein, S.D.</creatorcontrib><description>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 0780389387</identifier><identifier>ISBN: 9780780389380</identifier><identifier>EISSN: 1938-1883</identifier><identifier>DOI: 10.1109/ICC.2005.1494742</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Decoding ; Error analysis ; Feedback ; Interference cancellation ; MIMO ; Performance analysis ; Receiving antennas ; Signal to noise ratio ; Silicon carbide</subject><ispartof>IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.4, p.2282-2286 Vol. 4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1494742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1494742$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neng Wang</creatorcontrib><creatorcontrib>Blostein, S.D.</creatorcontrib><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><title>IEEE International Conference on Communications, 2005. ICC 2005. 2005</title><addtitle>ICC</addtitle><description>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</description><subject>Bit error rate</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>Feedback</subject><subject>Interference cancellation</subject><subject>MIMO</subject><subject>Performance analysis</subject><subject>Receiving antennas</subject><subject>Signal to noise ratio</subject><subject>Silicon carbide</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>0780389387</isbn><isbn>9780780389380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqwzAYhEUXaJL2XuhFL2BX8i9rOTYmbQ0xgZJ7kCMpqMgLlkObt6-gOQ18wwwzCD1TklNK1GtdVXlBSJlTpphgxQ1aUAUyo1LCLVoSIQnIBMRdMsqSZMCJeEDLGL9TqlBAF2jd-N535w6vN194HH7shHUIw1HPfuixGybc1M0OxzEBHXB3DrMfg_31_QnHS5xtFx_RvdMh2qerrtD-fbOvPrPt7qOu3rbZiTI-Z0VLtGRKlc5pDUdqQIBj2ljaOgmWtAJKB8ZRRRLkXDthuJMuzeTCGFihl_9ab609jJPv9HQ5XK_DH2B0S8g</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Neng Wang</creator><creator>Blostein, S.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Minimum BER power allocation for MIMO spatial multiplexing systems</title><author>Neng Wang ; Blostein, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g146t-2b0a84995ffaa3c1d373f4ade1bf83e0b735f3df190ade66af7d6f8f93167dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bit error rate</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>Feedback</topic><topic>Interference cancellation</topic><topic>MIMO</topic><topic>Performance analysis</topic><topic>Receiving antennas</topic><topic>Signal to noise ratio</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Neng Wang</creatorcontrib><creatorcontrib>Blostein, S.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neng Wang</au><au>Blostein, S.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum BER power allocation for MIMO spatial multiplexing systems</atitle><btitle>IEEE International Conference on Communications, 2005. ICC 2005. 2005</btitle><stitle>ICC</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>2282</spage><epage>2286 Vol. 4</epage><pages>2282-2286 Vol. 4</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>0780389387</isbn><isbn>9780780389380</isbn><abstract>Power allocation for multiple-input multiple-output (MIMO) spatial multiplexing systems is investigated. Minimization of bit error rate (MBER) is employed as the optimization criterion. MBER power allocation schemes for a variety of receiver structures, including zero-forcing (ZF), successive interference cancellation (SIC), and ordered SIC (OSIC), are proposed. It is shown that the newly proposed MBER power allocation schemes improve error rate performance. Simulation results indicate that SIC and OSIC with MBER power allocation outperform MBER precoding for ZF equalization as well as minimum mean squared-error (MMSE) preceding/decoding. Performance under noisy channels and power feedback is analyzed. A modified algorithm that mitigates error propagation in interference cancellation is developed. Compared to existing precoding methods, the proposed schemes significantly reduce both processing complexity and feedback overhead, and improve error rate performance.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2005.1494742</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-3607 |
ispartof | IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.4, p.2282-2286 Vol. 4 |
issn | 1550-3607 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_1494742 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bit error rate Decoding Error analysis Feedback Interference cancellation MIMO Performance analysis Receiving antennas Signal to noise ratio Silicon carbide |
title | Minimum BER power allocation for MIMO spatial multiplexing systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20BER%20power%20allocation%20for%20MIMO%20spatial%20multiplexing%20systems&rft.btitle=IEEE%20International%20Conference%20on%20Communications,%202005.%20ICC%202005.%202005&rft.au=Neng%20Wang&rft.date=2005&rft.volume=4&rft.spage=2282&rft.epage=2286%20Vol.%204&rft.pages=2282-2286%20Vol.%204&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=0780389387&rft.isbn_list=9780780389380&rft_id=info:doi/10.1109/ICC.2005.1494742&rft_dat=%3Cieee_6IE%3E1494742%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1494742&rfr_iscdi=true |