Generalized multiobjective multitree model for dynamic multicast groups

Generalized multiobjective multitree model (GMM-model) studied for the first time multitree-multicast load balancing with splitting in a multiobjective context. To solve the GMM-model, a multiobjective evolutionary algorithm (MOEA) inspired by the strength Pareto evolutionary algorithm (SPEA) was al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Donoso, Y., Fabregat, R., Solano, F., Marzo, J.L., Baran, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152 Vol. 1
container_issue
container_start_page 148
container_title
container_volume 1
creator Donoso, Y.
Fabregat, R.
Solano, F.
Marzo, J.L.
Baran, B.
description Generalized multiobjective multitree model (GMM-model) studied for the first time multitree-multicast load balancing with splitting in a multiobjective context. To solve the GMM-model, a multiobjective evolutionary algorithm (MOEA) inspired by the strength Pareto evolutionary algorithm (SPEA) was already proposed. In this paper, we extend the GMM-model to dynamic multicast groups (i.e. egress nodes can change during the connection's lifetime), given that, if recomputed from scratch, it may consume a considerable amount of CPU time. To alleviate this drawback we propose a dynamic generalized multiobjective multitree model (dynamic-GMM-model) that in order to add new egress nodes makes use of a multicast tree previously computed with the GMM-model. To solve the dynamic-GMM-model, a new MASPA (multiobjective approximation using shortest path algorithm) heuristic is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network. We compare the performance of the GMM-model using MOEA with the proposed dynamic-GMM-model using MASPA, showing that reasonable good solutions may be found using fewer resources (such as memory and time). The main contributions of this paper are the optimization model for dynamic multicast routing; and the proposed heuristic algorithm.
doi_str_mv 10.1109/ICC.2005.1494337
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1494337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1494337</ieee_id><sourcerecordid>1494337</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-8324254af5dbde0d95a07d8a467db35f5a8114128052e3fa16ba5008bc663b1c3</originalsourceid><addsrcrecordid>eNotUMtqwzAQFH1Ak7T3Qi_-Abu7XsmSj8W0TiDQS3sOkrUuCnYcZKeQfn0NyWlmZ5hhGSGeETJEKF83VZXlACpDWUoifSMWWJJJ0Ri6FUvQBsjMgr6bDaUgpQL0g1iO435O5SXhQtQ1HzjaLvyxT_pTN4XB7bmZwi9fzinyzAbPXdIOMfHng-1Dc_EaO07JTxxOx_FR3Le2G_npiivx_fH-Va3T7We9qd62aUBQU2ool7mStlXeeQZfKgvaGysL7R2pVlmDKDE3839MrcXCWQVgXFMU5LChlXi59AZm3h1j6G08764D0D8D503M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalized multiobjective multitree model for dynamic multicast groups</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Donoso, Y. ; Fabregat, R. ; Solano, F. ; Marzo, J.L. ; Baran, B.</creator><creatorcontrib>Donoso, Y. ; Fabregat, R. ; Solano, F. ; Marzo, J.L. ; Baran, B.</creatorcontrib><description>Generalized multiobjective multitree model (GMM-model) studied for the first time multitree-multicast load balancing with splitting in a multiobjective context. To solve the GMM-model, a multiobjective evolutionary algorithm (MOEA) inspired by the strength Pareto evolutionary algorithm (SPEA) was already proposed. In this paper, we extend the GMM-model to dynamic multicast groups (i.e. egress nodes can change during the connection's lifetime), given that, if recomputed from scratch, it may consume a considerable amount of CPU time. To alleviate this drawback we propose a dynamic generalized multiobjective multitree model (dynamic-GMM-model) that in order to add new egress nodes makes use of a multicast tree previously computed with the GMM-model. To solve the dynamic-GMM-model, a new MASPA (multiobjective approximation using shortest path algorithm) heuristic is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network. We compare the performance of the GMM-model using MOEA with the proposed dynamic-GMM-model using MASPA, showing that reasonable good solutions may be found using fewer resources (such as memory and time). The main contributions of this paper are the optimization model for dynamic multicast routing; and the proposed heuristic algorithm.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 0780389387</identifier><identifier>ISBN: 9780780389380</identifier><identifier>EISSN: 1938-1883</identifier><identifier>DOI: 10.1109/ICC.2005.1494337</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computer science ; Context modeling ; Dynamic programming ; Evolutionary computation ; Heuristic algorithms ; Load management ; Multicast algorithms ; Routing ; Telecommunication traffic</subject><ispartof>IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.1, p.148-152 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1494337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1494337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Donoso, Y.</creatorcontrib><creatorcontrib>Fabregat, R.</creatorcontrib><creatorcontrib>Solano, F.</creatorcontrib><creatorcontrib>Marzo, J.L.</creatorcontrib><creatorcontrib>Baran, B.</creatorcontrib><title>Generalized multiobjective multitree model for dynamic multicast groups</title><title>IEEE International Conference on Communications, 2005. ICC 2005. 2005</title><addtitle>ICC</addtitle><description>Generalized multiobjective multitree model (GMM-model) studied for the first time multitree-multicast load balancing with splitting in a multiobjective context. To solve the GMM-model, a multiobjective evolutionary algorithm (MOEA) inspired by the strength Pareto evolutionary algorithm (SPEA) was already proposed. In this paper, we extend the GMM-model to dynamic multicast groups (i.e. egress nodes can change during the connection's lifetime), given that, if recomputed from scratch, it may consume a considerable amount of CPU time. To alleviate this drawback we propose a dynamic generalized multiobjective multitree model (dynamic-GMM-model) that in order to add new egress nodes makes use of a multicast tree previously computed with the GMM-model. To solve the dynamic-GMM-model, a new MASPA (multiobjective approximation using shortest path algorithm) heuristic is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network. We compare the performance of the GMM-model using MOEA with the proposed dynamic-GMM-model using MASPA, showing that reasonable good solutions may be found using fewer resources (such as memory and time). The main contributions of this paper are the optimization model for dynamic multicast routing; and the proposed heuristic algorithm.</description><subject>Approximation algorithms</subject><subject>Computer science</subject><subject>Context modeling</subject><subject>Dynamic programming</subject><subject>Evolutionary computation</subject><subject>Heuristic algorithms</subject><subject>Load management</subject><subject>Multicast algorithms</subject><subject>Routing</subject><subject>Telecommunication traffic</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>0780389387</isbn><isbn>9780780389380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMtqwzAQFH1Ak7T3Qi_-Abu7XsmSj8W0TiDQS3sOkrUuCnYcZKeQfn0NyWlmZ5hhGSGeETJEKF83VZXlACpDWUoifSMWWJJJ0Ri6FUvQBsjMgr6bDaUgpQL0g1iO435O5SXhQtQ1HzjaLvyxT_pTN4XB7bmZwi9fzinyzAbPXdIOMfHng-1Dc_EaO07JTxxOx_FR3Le2G_npiivx_fH-Va3T7We9qd62aUBQU2ool7mStlXeeQZfKgvaGysL7R2pVlmDKDE3839MrcXCWQVgXFMU5LChlXi59AZm3h1j6G08764D0D8D503M</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Donoso, Y.</creator><creator>Fabregat, R.</creator><creator>Solano, F.</creator><creator>Marzo, J.L.</creator><creator>Baran, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Generalized multiobjective multitree model for dynamic multicast groups</title><author>Donoso, Y. ; Fabregat, R. ; Solano, F. ; Marzo, J.L. ; Baran, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-8324254af5dbde0d95a07d8a467db35f5a8114128052e3fa16ba5008bc663b1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation algorithms</topic><topic>Computer science</topic><topic>Context modeling</topic><topic>Dynamic programming</topic><topic>Evolutionary computation</topic><topic>Heuristic algorithms</topic><topic>Load management</topic><topic>Multicast algorithms</topic><topic>Routing</topic><topic>Telecommunication traffic</topic><toplevel>online_resources</toplevel><creatorcontrib>Donoso, Y.</creatorcontrib><creatorcontrib>Fabregat, R.</creatorcontrib><creatorcontrib>Solano, F.</creatorcontrib><creatorcontrib>Marzo, J.L.</creatorcontrib><creatorcontrib>Baran, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Donoso, Y.</au><au>Fabregat, R.</au><au>Solano, F.</au><au>Marzo, J.L.</au><au>Baran, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized multiobjective multitree model for dynamic multicast groups</atitle><btitle>IEEE International Conference on Communications, 2005. ICC 2005. 2005</btitle><stitle>ICC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>148</spage><epage>152 Vol. 1</epage><pages>148-152 Vol. 1</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>0780389387</isbn><isbn>9780780389380</isbn><abstract>Generalized multiobjective multitree model (GMM-model) studied for the first time multitree-multicast load balancing with splitting in a multiobjective context. To solve the GMM-model, a multiobjective evolutionary algorithm (MOEA) inspired by the strength Pareto evolutionary algorithm (SPEA) was already proposed. In this paper, we extend the GMM-model to dynamic multicast groups (i.e. egress nodes can change during the connection's lifetime), given that, if recomputed from scratch, it may consume a considerable amount of CPU time. To alleviate this drawback we propose a dynamic generalized multiobjective multitree model (dynamic-GMM-model) that in order to add new egress nodes makes use of a multicast tree previously computed with the GMM-model. To solve the dynamic-GMM-model, a new MASPA (multiobjective approximation using shortest path algorithm) heuristic is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network. We compare the performance of the GMM-model using MOEA with the proposed dynamic-GMM-model using MASPA, showing that reasonable good solutions may be found using fewer resources (such as memory and time). The main contributions of this paper are the optimization model for dynamic multicast routing; and the proposed heuristic algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2005.1494337</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof IEEE International Conference on Communications, 2005. ICC 2005. 2005, 2005, Vol.1, p.148-152 Vol. 1
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_1494337
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Computer science
Context modeling
Dynamic programming
Evolutionary computation
Heuristic algorithms
Load management
Multicast algorithms
Routing
Telecommunication traffic
title Generalized multiobjective multitree model for dynamic multicast groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20multiobjective%20multitree%20model%20for%20dynamic%20multicast%20groups&rft.btitle=IEEE%20International%20Conference%20on%20Communications,%202005.%20ICC%202005.%202005&rft.au=Donoso,%20Y.&rft.date=2005&rft.volume=1&rft.spage=148&rft.epage=152%20Vol.%201&rft.pages=148-152%20Vol.%201&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=0780389387&rft.isbn_list=9780780389380&rft_id=info:doi/10.1109/ICC.2005.1494337&rft_dat=%3Cieee_6IE%3E1494337%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1494337&rfr_iscdi=true