Single element excitation and detection of (micro-)mechanical resonators
The authors describe a single-element approach for the excitation and detection of the vibrational motion of (micro-)mechanical resonators. An equivalent electrical one-port network is derived for an electrostatically and a piezoelectrically driven resonator. In this way, the effect of the mechanica...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors describe a single-element approach for the excitation and detection of the vibrational motion of (micro-)mechanical resonators. An equivalent electrical one-port network is derived for an electrostatically and a piezoelectrically driven resonator. In this way, the effect of the mechanical resonator is transformed into the electrical domain and can easily be accounted for in a circuit simulation. A detection circuit, based on an (on-chip) bridged design, is proposed as a way to compensate for the parasitic parallel load of the one-port. A criterion is given for the accepted level of unbalance of the bridge if a minimal phase shift of 90 degrees in the transfer characteristic around resonance is required.< > |
---|---|
DOI: | 10.1109/SENSOR.1991.148931 |