Thin film silicon solar cell and module
We have been developed a new light trapping scheme for thin film Si stacked module (Si HYBRID PLUS module), where a-Si:H/transparent inter-layer/microcrystalline Si thin film integrated large area solar cell module. An initial aperture efficiency of 13.1% has been achieved for 910/spl times/455 mm/s...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have been developed a new light trapping scheme for thin film Si stacked module (Si HYBRID PLUS module), where a-Si:H/transparent inter-layer/microcrystalline Si thin film integrated large area solar cell module. An initial aperture efficiency of 13.1% has been achieved for 910/spl times/455 mm/sup 2/ Si HYBRID PLUS module, which was independently confirmed by AIST. This is the first time report for independently confirmed efficiency of large area thin film Si module with interlayer. The 19% increase of short circuit current (I/sub sc/) of this module was obtained by the introduction of transparent interlayer, namely internal light trapping. Stabilized efficiency of mini module exhibited the 12%. Outdoor performances of Si HYBRID (a-Si:H/micro-crystalline Si stacked) solar cell module have been investigated over 4 years for two different kind of modules (top and bottom cell limited, respectively). The Hybrid modules limited by the top cell have exhibited the more efficient performance rather than the bottom limited in natural sunlight at noon. |
---|---|
ISSN: | 0160-8371 |
DOI: | 10.1109/PVSC.2005.1488419 |