High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate
Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case,...
Gespeichert in:
Veröffentlicht in: | IEEE Trans. Electron Devices; (United States) 1984-05, Vol.31 (5), p.523-527 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 527 |
---|---|
container_issue | 5 |
container_start_page | 523 |
container_title | IEEE Trans. Electron Devices; (United States) |
container_volume | 31 |
creator | Mbewe, D.J. Thomson, D.J. McLeod, R.D. Card, H.C. |
description | Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon. |
doi_str_mv | 10.1109/T-ED.1984.21563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1483848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1483848</ieee_id><sourcerecordid>24231480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</originalsourceid><addsrcrecordid>eNqNkbtLBDEQxoMoeD5qC5tgYbdnXrvJ2omeDxBszjpksxMvspucm1j435tzBVuLYWbg9w3f8CF0RsmSUtJeravV3ZK2SiwZrRu-hxa0rmXVNqLZRwtCqKparvghOkrpvayNEGyB8qN_21Q-vIPNPgZsY-j9bkrYZNz7NERr5t0HnPzgC3GNb_AIdmOCTyN2ccI9bCH0ECzg6PDgHWQ_ljng7Sbm-AYBpp8zuDQ4QQfODAlOf_sxer1frW8fq-eXh6fbm-fKcqFyxa2T0DhZu7oD1fRd3wGQppOEE2k5b7kURnRMGsdprxjUjhEKjEtjLO06fowu5rsxZa-T9bmYLv5DeVY3TIm6FQW6nKHtFD8-IWU9-mRhGEyA-Jk0E4xToci_QCJrXsCrGbRTTGkCp7eTH830pSnRu6z0Wq_u9C4r_ZNVUZzPCg8Af7RQXJX6BuRBkcY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24230753</pqid></control><display><type>article</type><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><source>IEEE Electronic Library (IEL)</source><creator>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C.</creator><creatorcontrib>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C. ; Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><description>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/T-ED.1984.21563</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>140501 - Solar Energy Conversion- Photovoltaic Conversion ; CRYSTAL DEFECTS ; CRYSTAL STRUCTURE ; CRYSTALS ; CURRENTS ; DIRECT ENERGY CONVERTERS ; DISLOCATIONS ; ELECTRIC CURRENTS ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; EMISSION ; ILLUMINANCE ; IRRADIATION ; LIFETIME ; LINE DEFECTS ; MONOCHROMATIC RADIATION ; PHOTOCURRENTS ; PHOTOELECTRIC CELLS ; PHOTOEMISSION ; PHOTOVOLTAIC CELLS ; POLYCRYSTALS ; PULSED IRRADIATION ; RADIATIONS ; RECOMBINATION ; SECONDARY EMISSION ; SEMIMETALS ; SILICON ; SILICON SOLAR CELLS ; SOLAR CELLS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; SPACE CHARGE ; SPECTRAL RESPONSE ; VISIBLE RADIATION</subject><ispartof>IEEE Trans. Electron Devices; (United States), 1984-05, Vol.31 (5), p.523-527</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1483848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1483848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/6284594$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mbewe, D.J.</creatorcontrib><creatorcontrib>Thomson, D.J.</creatorcontrib><creatorcontrib>McLeod, R.D.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><creatorcontrib>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><title>IEEE Trans. Electron Devices; (United States)</title><addtitle>TED</addtitle><description>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</description><subject>140501 - Solar Energy Conversion- Photovoltaic Conversion</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALS</subject><subject>CURRENTS</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>DISLOCATIONS</subject><subject>ELECTRIC CURRENTS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>EMISSION</subject><subject>ILLUMINANCE</subject><subject>IRRADIATION</subject><subject>LIFETIME</subject><subject>LINE DEFECTS</subject><subject>MONOCHROMATIC RADIATION</subject><subject>PHOTOCURRENTS</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOEMISSION</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>POLYCRYSTALS</subject><subject>PULSED IRRADIATION</subject><subject>RADIATIONS</subject><subject>RECOMBINATION</subject><subject>SECONDARY EMISSION</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SILICON SOLAR CELLS</subject><subject>SOLAR CELLS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>SPACE CHARGE</subject><subject>SPECTRAL RESPONSE</subject><subject>VISIBLE RADIATION</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqNkbtLBDEQxoMoeD5qC5tgYbdnXrvJ2omeDxBszjpksxMvspucm1j435tzBVuLYWbg9w3f8CF0RsmSUtJeravV3ZK2SiwZrRu-hxa0rmXVNqLZRwtCqKparvghOkrpvayNEGyB8qN_21Q-vIPNPgZsY-j9bkrYZNz7NERr5t0HnPzgC3GNb_AIdmOCTyN2ccI9bCH0ECzg6PDgHWQ_ljng7Sbm-AYBpp8zuDQ4QQfODAlOf_sxer1frW8fq-eXh6fbm-fKcqFyxa2T0DhZu7oD1fRd3wGQppOEE2k5b7kURnRMGsdprxjUjhEKjEtjLO06fowu5rsxZa-T9bmYLv5DeVY3TIm6FQW6nKHtFD8-IWU9-mRhGEyA-Jk0E4xToci_QCJrXsCrGbRTTGkCp7eTH830pSnRu6z0Wq_u9C4r_ZNVUZzPCg8Af7RQXJX6BuRBkcY</recordid><startdate>19840501</startdate><enddate>19840501</enddate><creator>Mbewe, D.J.</creator><creator>Thomson, D.J.</creator><creator>McLeod, R.D.</creator><creator>Card, H.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>OTOTI</scope></search><sort><creationdate>19840501</creationdate><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><author>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>140501 - Solar Energy Conversion- Photovoltaic Conversion</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALS</topic><topic>CURRENTS</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>DISLOCATIONS</topic><topic>ELECTRIC CURRENTS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>EMISSION</topic><topic>ILLUMINANCE</topic><topic>IRRADIATION</topic><topic>LIFETIME</topic><topic>LINE DEFECTS</topic><topic>MONOCHROMATIC RADIATION</topic><topic>PHOTOCURRENTS</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOEMISSION</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>POLYCRYSTALS</topic><topic>PULSED IRRADIATION</topic><topic>RADIATIONS</topic><topic>RECOMBINATION</topic><topic>SECONDARY EMISSION</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SILICON SOLAR CELLS</topic><topic>SOLAR CELLS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>SPACE CHARGE</topic><topic>SPECTRAL RESPONSE</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mbewe, D.J.</creatorcontrib><creatorcontrib>Thomson, D.J.</creatorcontrib><creatorcontrib>McLeod, R.D.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><creatorcontrib>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Electron Devices; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mbewe, D.J.</au><au>Thomson, D.J.</au><au>McLeod, R.D.</au><au>Card, H.C.</au><aucorp>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</atitle><jtitle>IEEE Trans. Electron Devices; (United States)</jtitle><stitle>TED</stitle><date>1984-05-01</date><risdate>1984</risdate><volume>31</volume><issue>5</issue><spage>523</spage><epage>527</epage><pages>523-527</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/T-ED.1984.21563</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE Trans. Electron Devices; (United States), 1984-05, Vol.31 (5), p.523-527 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_1483848 |
source | IEEE Electronic Library (IEL) |
subjects | 140501 - Solar Energy Conversion- Photovoltaic Conversion CRYSTAL DEFECTS CRYSTAL STRUCTURE CRYSTALS CURRENTS DIRECT ENERGY CONVERTERS DISLOCATIONS ELECTRIC CURRENTS ELECTROMAGNETIC RADIATION ELEMENTS EMISSION ILLUMINANCE IRRADIATION LIFETIME LINE DEFECTS MONOCHROMATIC RADIATION PHOTOCURRENTS PHOTOELECTRIC CELLS PHOTOEMISSION PHOTOVOLTAIC CELLS POLYCRYSTALS PULSED IRRADIATION RADIATIONS RECOMBINATION SECONDARY EMISSION SEMIMETALS SILICON SILICON SOLAR CELLS SOLAR CELLS SOLAR ENERGY SOLAR EQUIPMENT SPACE CHARGE SPECTRAL RESPONSE VISIBLE RADIATION |
title | High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-injection%20conditions%20at%20dislocations%20in%20silicon:%20A%20mechanism%20for%20dependence%20of%20lifetime%20on%20photogeneration%20rate&rft.jtitle=IEEE%20Trans.%20Electron%20Devices;%20(United%20States)&rft.au=Mbewe,%20D.J.&rft.aucorp=Materials%20and%20Devices%20Research%20Laboratory,%20Department%20of%20Electrical%20Engineering,%20Univ.%20of%20Manitoba,%20Winnipeg&rft.date=1984-05-01&rft.volume=31&rft.issue=5&rft.spage=523&rft.epage=527&rft.pages=523-527&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/T-ED.1984.21563&rft_dat=%3Cproquest_RIE%3E24231480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24230753&rft_id=info:pmid/&rft_ieee_id=1483848&rfr_iscdi=true |