High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate

Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Electron Devices; (United States) 1984-05, Vol.31 (5), p.523-527
Hauptverfasser: Mbewe, D.J., Thomson, D.J., McLeod, R.D., Card, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue 5
container_start_page 523
container_title IEEE Trans. Electron Devices; (United States)
container_volume 31
creator Mbewe, D.J.
Thomson, D.J.
McLeod, R.D.
Card, H.C.
description Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.
doi_str_mv 10.1109/T-ED.1984.21563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1483848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1483848</ieee_id><sourcerecordid>24231480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</originalsourceid><addsrcrecordid>eNqNkbtLBDEQxoMoeD5qC5tgYbdnXrvJ2omeDxBszjpksxMvspucm1j435tzBVuLYWbg9w3f8CF0RsmSUtJeravV3ZK2SiwZrRu-hxa0rmXVNqLZRwtCqKparvghOkrpvayNEGyB8qN_21Q-vIPNPgZsY-j9bkrYZNz7NERr5t0HnPzgC3GNb_AIdmOCTyN2ccI9bCH0ECzg6PDgHWQ_ljng7Sbm-AYBpp8zuDQ4QQfODAlOf_sxer1frW8fq-eXh6fbm-fKcqFyxa2T0DhZu7oD1fRd3wGQppOEE2k5b7kURnRMGsdprxjUjhEKjEtjLO06fowu5rsxZa-T9bmYLv5DeVY3TIm6FQW6nKHtFD8-IWU9-mRhGEyA-Jk0E4xToci_QCJrXsCrGbRTTGkCp7eTH830pSnRu6z0Wq_u9C4r_ZNVUZzPCg8Af7RQXJX6BuRBkcY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24230753</pqid></control><display><type>article</type><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><source>IEEE Electronic Library (IEL)</source><creator>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C.</creator><creatorcontrib>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C. ; Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><description>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/T-ED.1984.21563</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>140501 - Solar Energy Conversion- Photovoltaic Conversion ; CRYSTAL DEFECTS ; CRYSTAL STRUCTURE ; CRYSTALS ; CURRENTS ; DIRECT ENERGY CONVERTERS ; DISLOCATIONS ; ELECTRIC CURRENTS ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; EMISSION ; ILLUMINANCE ; IRRADIATION ; LIFETIME ; LINE DEFECTS ; MONOCHROMATIC RADIATION ; PHOTOCURRENTS ; PHOTOELECTRIC CELLS ; PHOTOEMISSION ; PHOTOVOLTAIC CELLS ; POLYCRYSTALS ; PULSED IRRADIATION ; RADIATIONS ; RECOMBINATION ; SECONDARY EMISSION ; SEMIMETALS ; SILICON ; SILICON SOLAR CELLS ; SOLAR CELLS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; SPACE CHARGE ; SPECTRAL RESPONSE ; VISIBLE RADIATION</subject><ispartof>IEEE Trans. Electron Devices; (United States), 1984-05, Vol.31 (5), p.523-527</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1483848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1483848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/6284594$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mbewe, D.J.</creatorcontrib><creatorcontrib>Thomson, D.J.</creatorcontrib><creatorcontrib>McLeod, R.D.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><creatorcontrib>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><title>IEEE Trans. Electron Devices; (United States)</title><addtitle>TED</addtitle><description>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</description><subject>140501 - Solar Energy Conversion- Photovoltaic Conversion</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALS</subject><subject>CURRENTS</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>DISLOCATIONS</subject><subject>ELECTRIC CURRENTS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>EMISSION</subject><subject>ILLUMINANCE</subject><subject>IRRADIATION</subject><subject>LIFETIME</subject><subject>LINE DEFECTS</subject><subject>MONOCHROMATIC RADIATION</subject><subject>PHOTOCURRENTS</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOEMISSION</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>POLYCRYSTALS</subject><subject>PULSED IRRADIATION</subject><subject>RADIATIONS</subject><subject>RECOMBINATION</subject><subject>SECONDARY EMISSION</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SILICON SOLAR CELLS</subject><subject>SOLAR CELLS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>SPACE CHARGE</subject><subject>SPECTRAL RESPONSE</subject><subject>VISIBLE RADIATION</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqNkbtLBDEQxoMoeD5qC5tgYbdnXrvJ2omeDxBszjpksxMvspucm1j435tzBVuLYWbg9w3f8CF0RsmSUtJeravV3ZK2SiwZrRu-hxa0rmXVNqLZRwtCqKparvghOkrpvayNEGyB8qN_21Q-vIPNPgZsY-j9bkrYZNz7NERr5t0HnPzgC3GNb_AIdmOCTyN2ccI9bCH0ECzg6PDgHWQ_ljng7Sbm-AYBpp8zuDQ4QQfODAlOf_sxer1frW8fq-eXh6fbm-fKcqFyxa2T0DhZu7oD1fRd3wGQppOEE2k5b7kURnRMGsdprxjUjhEKjEtjLO06fowu5rsxZa-T9bmYLv5DeVY3TIm6FQW6nKHtFD8-IWU9-mRhGEyA-Jk0E4xToci_QCJrXsCrGbRTTGkCp7eTH830pSnRu6z0Wq_u9C4r_ZNVUZzPCg8Af7RQXJX6BuRBkcY</recordid><startdate>19840501</startdate><enddate>19840501</enddate><creator>Mbewe, D.J.</creator><creator>Thomson, D.J.</creator><creator>McLeod, R.D.</creator><creator>Card, H.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>OTOTI</scope></search><sort><creationdate>19840501</creationdate><title>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</title><author>Mbewe, D.J. ; Thomson, D.J. ; McLeod, R.D. ; Card, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3cf7e6f75f5be86dbdbee06b70307c339374a4b27af31d82e5f201e237aac1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>140501 - Solar Energy Conversion- Photovoltaic Conversion</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALS</topic><topic>CURRENTS</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>DISLOCATIONS</topic><topic>ELECTRIC CURRENTS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>EMISSION</topic><topic>ILLUMINANCE</topic><topic>IRRADIATION</topic><topic>LIFETIME</topic><topic>LINE DEFECTS</topic><topic>MONOCHROMATIC RADIATION</topic><topic>PHOTOCURRENTS</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOEMISSION</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>POLYCRYSTALS</topic><topic>PULSED IRRADIATION</topic><topic>RADIATIONS</topic><topic>RECOMBINATION</topic><topic>SECONDARY EMISSION</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SILICON SOLAR CELLS</topic><topic>SOLAR CELLS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>SPACE CHARGE</topic><topic>SPECTRAL RESPONSE</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mbewe, D.J.</creatorcontrib><creatorcontrib>Thomson, D.J.</creatorcontrib><creatorcontrib>McLeod, R.D.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><creatorcontrib>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Electron Devices; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mbewe, D.J.</au><au>Thomson, D.J.</au><au>McLeod, R.D.</au><au>Card, H.C.</au><aucorp>Materials and Devices Research Laboratory, Department of Electrical Engineering, Univ. of Manitoba, Winnipeg</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate</atitle><jtitle>IEEE Trans. Electron Devices; (United States)</jtitle><stitle>TED</stitle><date>1984-05-01</date><risdate>1984</risdate><volume>31</volume><issue>5</issue><spage>523</spage><epage>527</epage><pages>523-527</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Experimental observations are presented concerning the dependence of the spectral response of silicon photovoltaic cells upon the optical illumination intensity. These effects are significant only in silicon materials with many extended defects such as dislocations or grain boundaries. In this case, the short-circuit current response to a chopped monochromatic optical excitation increases monotonically as a background optical (white light) bias is increased to approximately AM1 intensity. These results may be explained in terms of SRH recombination through defect states at dislocations which under these conditions enter a high-injection regime at the defect sites, as a result of their associated space-charge regions. The mechanism helps to understand the observation that the photocurrents in solar cells made from cast polycrystalline silicon are not appreciably lower than for crystalline silicon.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/T-ED.1984.21563</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE Trans. Electron Devices; (United States), 1984-05, Vol.31 (5), p.523-527
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_1483848
source IEEE Electronic Library (IEL)
subjects 140501 - Solar Energy Conversion- Photovoltaic Conversion
CRYSTAL DEFECTS
CRYSTAL STRUCTURE
CRYSTALS
CURRENTS
DIRECT ENERGY CONVERTERS
DISLOCATIONS
ELECTRIC CURRENTS
ELECTROMAGNETIC RADIATION
ELEMENTS
EMISSION
ILLUMINANCE
IRRADIATION
LIFETIME
LINE DEFECTS
MONOCHROMATIC RADIATION
PHOTOCURRENTS
PHOTOELECTRIC CELLS
PHOTOEMISSION
PHOTOVOLTAIC CELLS
POLYCRYSTALS
PULSED IRRADIATION
RADIATIONS
RECOMBINATION
SECONDARY EMISSION
SEMIMETALS
SILICON
SILICON SOLAR CELLS
SOLAR CELLS
SOLAR ENERGY
SOLAR EQUIPMENT
SPACE CHARGE
SPECTRAL RESPONSE
VISIBLE RADIATION
title High-injection conditions at dislocations in silicon: A mechanism for dependence of lifetime on photogeneration rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-injection%20conditions%20at%20dislocations%20in%20silicon:%20A%20mechanism%20for%20dependence%20of%20lifetime%20on%20photogeneration%20rate&rft.jtitle=IEEE%20Trans.%20Electron%20Devices;%20(United%20States)&rft.au=Mbewe,%20D.J.&rft.aucorp=Materials%20and%20Devices%20Research%20Laboratory,%20Department%20of%20Electrical%20Engineering,%20Univ.%20of%20Manitoba,%20Winnipeg&rft.date=1984-05-01&rft.volume=31&rft.issue=5&rft.spage=523&rft.epage=527&rft.pages=523-527&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/T-ED.1984.21563&rft_dat=%3Cproquest_RIE%3E24231480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24230753&rft_id=info:pmid/&rft_ieee_id=1483848&rfr_iscdi=true