LSI's for digital signal processing

This paper describes high-performance CMOS LSI's for digital signal-processing (DSP) technology, such as digital filter, fast Fourier transform (FFT), discrete Fourier transform (DFT), and digital phase-locked loop (DPLL). First, DSP functions for communication use, functional blocks to compose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1979-04, Vol.26 (4), p.292-298
Hauptverfasser: Ohwada, N., Kimura, T., Doken, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 4
container_start_page 292
container_title IEEE transactions on electron devices
container_volume 26
creator Ohwada, N.
Kimura, T.
Doken, M.
description This paper describes high-performance CMOS LSI's for digital signal-processing (DSP) technology, such as digital filter, fast Fourier transform (FFT), discrete Fourier transform (DFT), and digital phase-locked loop (DPLL). First, DSP functions for communication use, functional blocks to compose DSP functions, and the types of arithmetic for LSI are discussed. It is explained that multiplier (MPL), variable-length shift register (VSR), and linear arithmetic processor (LAP) have been chosen as the most useful DSP LSI's. Device design for high-speed and low-power CMOS is described and its feasibility is shown as characteristics of propagation delay time at 430 ps and power delay product at 0.073 pJ. The 3-µm effective channel-length CMOS technology has been selected for the DSP LSI because of the high speed, 5 ns, in the case of two input NAND gates and high yield technology. The multiplier architecture is pipeline and uses the Two's-complement representative, the variable-length shift register uses the binary-select method, and the linear arithmetic processor uses the method of changing the outside connections for realization of DSP functions. Maximum operating frequency of these LSI's is more than 23 MHz at the 5-V source voltage. Power dissipation of a VSR, which has been lossy, is less than 250 mW in the 8-MHz operation. They have wider application to communication systems. High-speed CMOS technology is applied to the digital system equipment up to the second level of the PCM hierarchy.
doi_str_mv 10.1109/T-ED.1979.19428
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1480006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1480006</ieee_id><sourcerecordid>10_1109_T_ED_1979_19428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-335528e9421350df697eca2a5725bde377abe3856fcf0a40c355775f10c10a023</originalsourceid><addsrcrecordid>eNpFj71LAzEYxoMoeFZnB5cDB6e0b74vo7SnFg4cPOeQ5pIjUnsl6eJ_b9oKLu_DC88HP4TuCcwJAb3ocbuaE610OZw2F6giQiisJZeXqAIgDdasYdfoJuev8krOaYUeu4_1U67DlOohjvFgt3WO467IPk3O5xx34y26Cnab_d2fztDnS9sv33D3_rpePnfYUcIOmDEhaOPLOGEChiC18s5SKxQVm8EzpezGs0bI4AJYDq74lRKBgCNggbIZWpx7XZpyTj6YfYrfNv0YAubIaHrTrsyR0ZwYS-LhnIje-383bwBAsl9APEsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LSI's for digital signal processing</title><source>IEEE Electronic Library (IEL)</source><creator>Ohwada, N. ; Kimura, T. ; Doken, M.</creator><creatorcontrib>Ohwada, N. ; Kimura, T. ; Doken, M.</creatorcontrib><description>This paper describes high-performance CMOS LSI's for digital signal-processing (DSP) technology, such as digital filter, fast Fourier transform (FFT), discrete Fourier transform (DFT), and digital phase-locked loop (DPLL). First, DSP functions for communication use, functional blocks to compose DSP functions, and the types of arithmetic for LSI are discussed. It is explained that multiplier (MPL), variable-length shift register (VSR), and linear arithmetic processor (LAP) have been chosen as the most useful DSP LSI's. Device design for high-speed and low-power CMOS is described and its feasibility is shown as characteristics of propagation delay time at 430 ps and power delay product at 0.073 pJ. The 3-µm effective channel-length CMOS technology has been selected for the DSP LSI because of the high speed, 5 ns, in the case of two input NAND gates and high yield technology. The multiplier architecture is pipeline and uses the Two's-complement representative, the variable-length shift register uses the binary-select method, and the linear arithmetic processor uses the method of changing the outside connections for realization of DSP functions. Maximum operating frequency of these LSI's is more than 23 MHz at the 5-V source voltage. Power dissipation of a VSR, which has been lossy, is less than 250 mW in the 8-MHz operation. They have wider application to communication systems. High-speed CMOS technology is applied to the digital system equipment up to the second level of the PCM hierarchy.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/T-ED.1979.19428</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on electron devices, 1979-04, Vol.26 (4), p.292-298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1480006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1480006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ohwada, N.</creatorcontrib><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Doken, M.</creatorcontrib><title>LSI's for digital signal processing</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper describes high-performance CMOS LSI's for digital signal-processing (DSP) technology, such as digital filter, fast Fourier transform (FFT), discrete Fourier transform (DFT), and digital phase-locked loop (DPLL). First, DSP functions for communication use, functional blocks to compose DSP functions, and the types of arithmetic for LSI are discussed. It is explained that multiplier (MPL), variable-length shift register (VSR), and linear arithmetic processor (LAP) have been chosen as the most useful DSP LSI's. Device design for high-speed and low-power CMOS is described and its feasibility is shown as characteristics of propagation delay time at 430 ps and power delay product at 0.073 pJ. The 3-µm effective channel-length CMOS technology has been selected for the DSP LSI because of the high speed, 5 ns, in the case of two input NAND gates and high yield technology. The multiplier architecture is pipeline and uses the Two's-complement representative, the variable-length shift register uses the binary-select method, and the linear arithmetic processor uses the method of changing the outside connections for realization of DSP functions. Maximum operating frequency of these LSI's is more than 23 MHz at the 5-V source voltage. Power dissipation of a VSR, which has been lossy, is less than 250 mW in the 8-MHz operation. They have wider application to communication systems. High-speed CMOS technology is applied to the digital system equipment up to the second level of the PCM hierarchy.</description><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNpFj71LAzEYxoMoeFZnB5cDB6e0b74vo7SnFg4cPOeQ5pIjUnsl6eJ_b9oKLu_DC88HP4TuCcwJAb3ocbuaE610OZw2F6giQiisJZeXqAIgDdasYdfoJuev8krOaYUeu4_1U67DlOohjvFgt3WO467IPk3O5xx34y26Cnab_d2fztDnS9sv33D3_rpePnfYUcIOmDEhaOPLOGEChiC18s5SKxQVm8EzpezGs0bI4AJYDq74lRKBgCNggbIZWpx7XZpyTj6YfYrfNv0YAubIaHrTrsyR0ZwYS-LhnIje-383bwBAsl9APEsh</recordid><startdate>197904</startdate><enddate>197904</enddate><creator>Ohwada, N.</creator><creator>Kimura, T.</creator><creator>Doken, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197904</creationdate><title>LSI's for digital signal processing</title><author>Ohwada, N. ; Kimura, T. ; Doken, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-335528e9421350df697eca2a5725bde377abe3856fcf0a40c355775f10c10a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohwada, N.</creatorcontrib><creatorcontrib>Kimura, T.</creatorcontrib><creatorcontrib>Doken, M.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ohwada, N.</au><au>Kimura, T.</au><au>Doken, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSI's for digital signal processing</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1979-04</date><risdate>1979</risdate><volume>26</volume><issue>4</issue><spage>292</spage><epage>298</epage><pages>292-298</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper describes high-performance CMOS LSI's for digital signal-processing (DSP) technology, such as digital filter, fast Fourier transform (FFT), discrete Fourier transform (DFT), and digital phase-locked loop (DPLL). First, DSP functions for communication use, functional blocks to compose DSP functions, and the types of arithmetic for LSI are discussed. It is explained that multiplier (MPL), variable-length shift register (VSR), and linear arithmetic processor (LAP) have been chosen as the most useful DSP LSI's. Device design for high-speed and low-power CMOS is described and its feasibility is shown as characteristics of propagation delay time at 430 ps and power delay product at 0.073 pJ. The 3-µm effective channel-length CMOS technology has been selected for the DSP LSI because of the high speed, 5 ns, in the case of two input NAND gates and high yield technology. The multiplier architecture is pipeline and uses the Two's-complement representative, the variable-length shift register uses the binary-select method, and the linear arithmetic processor uses the method of changing the outside connections for realization of DSP functions. Maximum operating frequency of these LSI's is more than 23 MHz at the 5-V source voltage. Power dissipation of a VSR, which has been lossy, is less than 250 mW in the 8-MHz operation. They have wider application to communication systems. High-speed CMOS technology is applied to the digital system equipment up to the second level of the PCM hierarchy.</abstract><pub>IEEE</pub><doi>10.1109/T-ED.1979.19428</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1979-04, Vol.26 (4), p.292-298
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_1480006
source IEEE Electronic Library (IEL)
title LSI's for digital signal processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSI's%20for%20digital%20signal%20processing&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ohwada,%20N.&rft.date=1979-04&rft.volume=26&rft.issue=4&rft.spage=292&rft.epage=298&rft.pages=292-298&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/T-ED.1979.19428&rft_dat=%3Ccrossref_RIE%3E10_1109_T_ED_1979_19428%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1480006&rfr_iscdi=true