Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons

The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2005-08, Vol.5 (4), p.641-647
Hauptverfasser: Voiculescu, I., Zaghloul, M.E., McGill, R.A., Houser, E.J., Fedder, G.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 4
container_start_page 641
container_title IEEE sensors journal
container_volume 5
creator Voiculescu, I.
Zaghloul, M.E.
McGill, R.A.
Houser, E.J.
Fedder, G.K.
description The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.
doi_str_mv 10.1109/JSEN.2005.851016
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1468119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468119</ieee_id><sourcerecordid>28028681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxYMoWKt3wcviwVvqbpLtbo5S6hfVHqrgbZnsTmxKkm13N0r_exMqCJ7mMfzezDAvii4ZnTBG89vn1fx1klDKJ5IzyqZH0YhxLmMmMnk86JTGWSo-TqMz7zeUslxwMYp28xp1cNYHCJWGut4T0KGDgIY49LaFNpCm0s7qXlU1fqEjBUJDqpbMXpYrElCvW1vbzz0prSNhjcRg3wyVbYktiV5jM0wm3whb2_rz6KSE2uPFbx1H7_fzt9ljvFg-PM3uFrFOExbi3OgcE8MFBYAUJIhC03zKecEzmRqpWVIUVOe8yCUKMCbBUpdGAKNYSiPTcXRzmLt1dtehD6qpvMa6hhZt51UiaSKnkvXg9T9wYzvX9rcpKdOMiYQPED1A_Se8d1iqrasacHvFqBoCUEMAaghAHQLoLVcHS4WIf3jW72R5-gOTEISj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883417251</pqid></control><display><type>article</type><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><source>IEEE Electronic Library (IEL)</source><creator>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</creator><creatorcontrib>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</creatorcontrib><description>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2005.851016</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological &amp; chemical weapons ; Bridge circuits ; Cantilever beam ; Chemical hazards ; Chemical technology ; CMOS technology ; complementary metal-oxide semiconductor (CMOS) technology ; electrostatic actuation ; Fabrication ; gas sensor ; nerve agent ; Resonance ; Semiconductor device testing ; Sensors ; Signal design ; Structural beams ; Weapons</subject><ispartof>IEEE sensors journal, 2005-08, Vol.5 (4), p.641-647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</citedby><cites>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Voiculescu, I.</creatorcontrib><creatorcontrib>Zaghloul, M.E.</creatorcontrib><creatorcontrib>McGill, R.A.</creatorcontrib><creatorcontrib>Houser, E.J.</creatorcontrib><creatorcontrib>Fedder, G.K.</creatorcontrib><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</description><subject>Biological &amp; chemical weapons</subject><subject>Bridge circuits</subject><subject>Cantilever beam</subject><subject>Chemical hazards</subject><subject>Chemical technology</subject><subject>CMOS technology</subject><subject>complementary metal-oxide semiconductor (CMOS) technology</subject><subject>electrostatic actuation</subject><subject>Fabrication</subject><subject>gas sensor</subject><subject>nerve agent</subject><subject>Resonance</subject><subject>Semiconductor device testing</subject><subject>Sensors</subject><subject>Signal design</subject><subject>Structural beams</subject><subject>Weapons</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1Lw0AQxYMoWKt3wcviwVvqbpLtbo5S6hfVHqrgbZnsTmxKkm13N0r_exMqCJ7mMfzezDAvii4ZnTBG89vn1fx1klDKJ5IzyqZH0YhxLmMmMnk86JTGWSo-TqMz7zeUslxwMYp28xp1cNYHCJWGut4T0KGDgIY49LaFNpCm0s7qXlU1fqEjBUJDqpbMXpYrElCvW1vbzz0prSNhjcRg3wyVbYktiV5jM0wm3whb2_rz6KSE2uPFbx1H7_fzt9ljvFg-PM3uFrFOExbi3OgcE8MFBYAUJIhC03zKecEzmRqpWVIUVOe8yCUKMCbBUpdGAKNYSiPTcXRzmLt1dtehD6qpvMa6hhZt51UiaSKnkvXg9T9wYzvX9rcpKdOMiYQPED1A_Se8d1iqrasacHvFqBoCUEMAaghAHQLoLVcHS4WIf3jW72R5-gOTEISj</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Voiculescu, I.</creator><creator>Zaghloul, M.E.</creator><creator>McGill, R.A.</creator><creator>Houser, E.J.</creator><creator>Fedder, G.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><author>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological &amp; chemical weapons</topic><topic>Bridge circuits</topic><topic>Cantilever beam</topic><topic>Chemical hazards</topic><topic>Chemical technology</topic><topic>CMOS technology</topic><topic>complementary metal-oxide semiconductor (CMOS) technology</topic><topic>electrostatic actuation</topic><topic>Fabrication</topic><topic>gas sensor</topic><topic>nerve agent</topic><topic>Resonance</topic><topic>Semiconductor device testing</topic><topic>Sensors</topic><topic>Signal design</topic><topic>Structural beams</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voiculescu, I.</creatorcontrib><creatorcontrib>Zaghloul, M.E.</creatorcontrib><creatorcontrib>McGill, R.A.</creatorcontrib><creatorcontrib>Houser, E.J.</creatorcontrib><creatorcontrib>Fedder, G.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Voiculescu, I.</au><au>Zaghloul, M.E.</au><au>McGill, R.A.</au><au>Houser, E.J.</au><au>Fedder, G.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>5</volume><issue>4</issue><spage>641</spage><epage>647</epage><pages>641-647</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2005.851016</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2005-08, Vol.5 (4), p.641-647
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_1468119
source IEEE Electronic Library (IEL)
subjects Biological & chemical weapons
Bridge circuits
Cantilever beam
Chemical hazards
Chemical technology
CMOS technology
complementary metal-oxide semiconductor (CMOS) technology
electrostatic actuation
Fabrication
gas sensor
nerve agent
Resonance
Semiconductor device testing
Sensors
Signal design
Structural beams
Weapons
title Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatically%20actuated%20resonant%20microcantilever%20beam%20in%20CMOS%20technology%20for%20the%20detection%20of%20chemical%20weapons&rft.jtitle=IEEE%20sensors%20journal&rft.au=Voiculescu,%20I.&rft.date=2005-08-01&rft.volume=5&rft.issue=4&rft.spage=641&rft.epage=647&rft.pages=641-647&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2005.851016&rft_dat=%3Cproquest_RIE%3E28028681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883417251&rft_id=info:pmid/&rft_ieee_id=1468119&rfr_iscdi=true