Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons
The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2005-08, Vol.5 (4), p.641-647 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 647 |
---|---|
container_issue | 4 |
container_start_page | 641 |
container_title | IEEE sensors journal |
container_volume | 5 |
creator | Voiculescu, I. Zaghloul, M.E. McGill, R.A. Houser, E.J. Fedder, G.K. |
description | The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam. |
doi_str_mv | 10.1109/JSEN.2005.851016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1468119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468119</ieee_id><sourcerecordid>28028681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxYMoWKt3wcviwVvqbpLtbo5S6hfVHqrgbZnsTmxKkm13N0r_exMqCJ7mMfzezDAvii4ZnTBG89vn1fx1klDKJ5IzyqZH0YhxLmMmMnk86JTGWSo-TqMz7zeUslxwMYp28xp1cNYHCJWGut4T0KGDgIY49LaFNpCm0s7qXlU1fqEjBUJDqpbMXpYrElCvW1vbzz0prSNhjcRg3wyVbYktiV5jM0wm3whb2_rz6KSE2uPFbx1H7_fzt9ljvFg-PM3uFrFOExbi3OgcE8MFBYAUJIhC03zKecEzmRqpWVIUVOe8yCUKMCbBUpdGAKNYSiPTcXRzmLt1dtehD6qpvMa6hhZt51UiaSKnkvXg9T9wYzvX9rcpKdOMiYQPED1A_Se8d1iqrasacHvFqBoCUEMAaghAHQLoLVcHS4WIf3jW72R5-gOTEISj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883417251</pqid></control><display><type>article</type><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><source>IEEE Electronic Library (IEL)</source><creator>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</creator><creatorcontrib>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</creatorcontrib><description>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2005.851016</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological & chemical weapons ; Bridge circuits ; Cantilever beam ; Chemical hazards ; Chemical technology ; CMOS technology ; complementary metal-oxide semiconductor (CMOS) technology ; electrostatic actuation ; Fabrication ; gas sensor ; nerve agent ; Resonance ; Semiconductor device testing ; Sensors ; Signal design ; Structural beams ; Weapons</subject><ispartof>IEEE sensors journal, 2005-08, Vol.5 (4), p.641-647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</citedby><cites>FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Voiculescu, I.</creatorcontrib><creatorcontrib>Zaghloul, M.E.</creatorcontrib><creatorcontrib>McGill, R.A.</creatorcontrib><creatorcontrib>Houser, E.J.</creatorcontrib><creatorcontrib>Fedder, G.K.</creatorcontrib><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</description><subject>Biological & chemical weapons</subject><subject>Bridge circuits</subject><subject>Cantilever beam</subject><subject>Chemical hazards</subject><subject>Chemical technology</subject><subject>CMOS technology</subject><subject>complementary metal-oxide semiconductor (CMOS) technology</subject><subject>electrostatic actuation</subject><subject>Fabrication</subject><subject>gas sensor</subject><subject>nerve agent</subject><subject>Resonance</subject><subject>Semiconductor device testing</subject><subject>Sensors</subject><subject>Signal design</subject><subject>Structural beams</subject><subject>Weapons</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1Lw0AQxYMoWKt3wcviwVvqbpLtbo5S6hfVHqrgbZnsTmxKkm13N0r_exMqCJ7mMfzezDAvii4ZnTBG89vn1fx1klDKJ5IzyqZH0YhxLmMmMnk86JTGWSo-TqMz7zeUslxwMYp28xp1cNYHCJWGut4T0KGDgIY49LaFNpCm0s7qXlU1fqEjBUJDqpbMXpYrElCvW1vbzz0prSNhjcRg3wyVbYktiV5jM0wm3whb2_rz6KSE2uPFbx1H7_fzt9ljvFg-PM3uFrFOExbi3OgcE8MFBYAUJIhC03zKecEzmRqpWVIUVOe8yCUKMCbBUpdGAKNYSiPTcXRzmLt1dtehD6qpvMa6hhZt51UiaSKnkvXg9T9wYzvX9rcpKdOMiYQPED1A_Se8d1iqrasacHvFqBoCUEMAaghAHQLoLVcHS4WIf3jW72R5-gOTEISj</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Voiculescu, I.</creator><creator>Zaghloul, M.E.</creator><creator>McGill, R.A.</creator><creator>Houser, E.J.</creator><creator>Fedder, G.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</title><author>Voiculescu, I. ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J. ; Fedder, G.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9dc9e2d570aaa3a8a7bc09655b5483d8c12bb0c95b98e7add2efcfd7a10ef8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological & chemical weapons</topic><topic>Bridge circuits</topic><topic>Cantilever beam</topic><topic>Chemical hazards</topic><topic>Chemical technology</topic><topic>CMOS technology</topic><topic>complementary metal-oxide semiconductor (CMOS) technology</topic><topic>electrostatic actuation</topic><topic>Fabrication</topic><topic>gas sensor</topic><topic>nerve agent</topic><topic>Resonance</topic><topic>Semiconductor device testing</topic><topic>Sensors</topic><topic>Signal design</topic><topic>Structural beams</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voiculescu, I.</creatorcontrib><creatorcontrib>Zaghloul, M.E.</creatorcontrib><creatorcontrib>McGill, R.A.</creatorcontrib><creatorcontrib>Houser, E.J.</creatorcontrib><creatorcontrib>Fedder, G.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Voiculescu, I.</au><au>Zaghloul, M.E.</au><au>McGill, R.A.</au><au>Houser, E.J.</au><au>Fedder, G.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>5</volume><issue>4</issue><spage>641</spage><epage>647</epage><pages>641-647</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-/spl mu/m, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m/sup 3/. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2005.851016</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2005-08, Vol.5 (4), p.641-647 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_1468119 |
source | IEEE Electronic Library (IEL) |
subjects | Biological & chemical weapons Bridge circuits Cantilever beam Chemical hazards Chemical technology CMOS technology complementary metal-oxide semiconductor (CMOS) technology electrostatic actuation Fabrication gas sensor nerve agent Resonance Semiconductor device testing Sensors Signal design Structural beams Weapons |
title | Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatically%20actuated%20resonant%20microcantilever%20beam%20in%20CMOS%20technology%20for%20the%20detection%20of%20chemical%20weapons&rft.jtitle=IEEE%20sensors%20journal&rft.au=Voiculescu,%20I.&rft.date=2005-08-01&rft.volume=5&rft.issue=4&rft.spage=641&rft.epage=647&rft.pages=641-647&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2005.851016&rft_dat=%3Cproquest_RIE%3E28028681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883417251&rft_id=info:pmid/&rft_ieee_id=1468119&rfr_iscdi=true |