Multiobjective VLSI cell placement using distributed simulated evolution algorithm

Simulated evolution (SimE) is a sound stochastic approximation algorithm based on the principles of adaptation. If properly engineered it is possible for SimE to reach near-optimal solutions in less time than simulated annealing. Nevertheless, depending on the size of the problem, it may have large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sait, S.M., Ali, M.I., Zaidi, A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6229 Vol. 6
container_issue
container_start_page 6226
container_title
container_volume
creator Sait, S.M.
Ali, M.I.
Zaidi, A.M.
description Simulated evolution (SimE) is a sound stochastic approximation algorithm based on the principles of adaptation. If properly engineered it is possible for SimE to reach near-optimal solutions in less time than simulated annealing. Nevertheless, depending on the size of the problem, it may have large run-time requirements. One practical approach to speed up the execution of the SimE algorithm is to parallelize it. This is all the more true for multi-objective cell placement, where the need to optimize conflicting objectives (interconnect wirelength, power dissipation, and timing performance) adds another level of difficulty. In this paper a distributed parallel SimE algorithm is presented for multiobjective VLSI standard cell placement. Fuzzy logic is used to integrate the costs of these objectives. The algorithm presented is based on random distribution of rows to individual processors in order to partition the problem and distribute computationally intensive tasks, while also efficiently traversing the complex search space. A series of experiments are performed on ISCAS-85/89 benchmarks to compare speedup with serial implementation and other earlier proposals. Discussion on comparison with parallel implementations of other iterative heuristics is included.
doi_str_mv 10.1109/ISCAS.2005.1466063
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1466063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1466063</ieee_id><sourcerecordid>1466063</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d5f4a07944ceffd4f13f3f2dc01c6ce8f37e4422cae0c77088e4bb728b8a0f63</originalsourceid><addsrcrecordid>eNotkMtqwzAUREUf0JDmB9qNfsDp1cuSlyH0YUgp1G23QZavUgU5CZYc6N83pRkG5qzOYgi5YzBnDKqHulkumjkHUHMmyxJKcUEmnClTMMXVJZlV2sCpwhgh1RWZANeskAL4DZmltIVTpBKalxPy_jrGHPbtFl0OR6Rfq6amDmOkh2gd9rjLdExht6FdSHkI7Zixoyn0Y7R_hMd9HE-CHbVxsx9C_u5vybW3MeHsvFPy-fT4sXwpVm_P9XKxKgLTKheqU15a0JWUDr3vpGfCC887B8yVDo0XGqXk3FkEpzUYg7JtNTetseBLMSX3_96AiOvDEHo7_KzPj4hfK9xUkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiobjective VLSI cell placement using distributed simulated evolution algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sait, S.M. ; Ali, M.I. ; Zaidi, A.M.</creator><creatorcontrib>Sait, S.M. ; Ali, M.I. ; Zaidi, A.M.</creatorcontrib><description>Simulated evolution (SimE) is a sound stochastic approximation algorithm based on the principles of adaptation. If properly engineered it is possible for SimE to reach near-optimal solutions in less time than simulated annealing. Nevertheless, depending on the size of the problem, it may have large run-time requirements. One practical approach to speed up the execution of the SimE algorithm is to parallelize it. This is all the more true for multi-objective cell placement, where the need to optimize conflicting objectives (interconnect wirelength, power dissipation, and timing performance) adds another level of difficulty. In this paper a distributed parallel SimE algorithm is presented for multiobjective VLSI standard cell placement. Fuzzy logic is used to integrate the costs of these objectives. The algorithm presented is based on random distribution of rows to individual processors in order to partition the problem and distribute computationally intensive tasks, while also efficiently traversing the complex search space. A series of experiments are performed on ISCAS-85/89 benchmarks to compare speedup with serial implementation and other earlier proposals. Discussion on comparison with parallel implementations of other iterative heuristics is included.</description><identifier>ISSN: 0271-4302</identifier><identifier>ISBN: 9780780388345</identifier><identifier>ISBN: 0780388348</identifier><identifier>EISSN: 2158-1525</identifier><identifier>DOI: 10.1109/ISCAS.2005.1466063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustical engineering ; Approximation algorithms ; Fuzzy logic ; Partitioning algorithms ; Power dissipation ; Runtime ; Simulated annealing ; Stochastic processes ; Timing ; Very large scale integration</subject><ispartof>2005 IEEE International Symposium on Circuits and Systems (ISCAS), 2005, p.6226-6229 Vol. 6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1466063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1466063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sait, S.M.</creatorcontrib><creatorcontrib>Ali, M.I.</creatorcontrib><creatorcontrib>Zaidi, A.M.</creatorcontrib><title>Multiobjective VLSI cell placement using distributed simulated evolution algorithm</title><title>2005 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>Simulated evolution (SimE) is a sound stochastic approximation algorithm based on the principles of adaptation. If properly engineered it is possible for SimE to reach near-optimal solutions in less time than simulated annealing. Nevertheless, depending on the size of the problem, it may have large run-time requirements. One practical approach to speed up the execution of the SimE algorithm is to parallelize it. This is all the more true for multi-objective cell placement, where the need to optimize conflicting objectives (interconnect wirelength, power dissipation, and timing performance) adds another level of difficulty. In this paper a distributed parallel SimE algorithm is presented for multiobjective VLSI standard cell placement. Fuzzy logic is used to integrate the costs of these objectives. The algorithm presented is based on random distribution of rows to individual processors in order to partition the problem and distribute computationally intensive tasks, while also efficiently traversing the complex search space. A series of experiments are performed on ISCAS-85/89 benchmarks to compare speedup with serial implementation and other earlier proposals. Discussion on comparison with parallel implementations of other iterative heuristics is included.</description><subject>Acoustical engineering</subject><subject>Approximation algorithms</subject><subject>Fuzzy logic</subject><subject>Partitioning algorithms</subject><subject>Power dissipation</subject><subject>Runtime</subject><subject>Simulated annealing</subject><subject>Stochastic processes</subject><subject>Timing</subject><subject>Very large scale integration</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9780780388345</isbn><isbn>0780388348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtqwzAUREUf0JDmB9qNfsDp1cuSlyH0YUgp1G23QZavUgU5CZYc6N83pRkG5qzOYgi5YzBnDKqHulkumjkHUHMmyxJKcUEmnClTMMXVJZlV2sCpwhgh1RWZANeskAL4DZmltIVTpBKalxPy_jrGHPbtFl0OR6Rfq6amDmOkh2gd9rjLdExht6FdSHkI7Zixoyn0Y7R_hMd9HE-CHbVxsx9C_u5vybW3MeHsvFPy-fT4sXwpVm_P9XKxKgLTKheqU15a0JWUDr3vpGfCC887B8yVDo0XGqXk3FkEpzUYg7JtNTetseBLMSX3_96AiOvDEHo7_KzPj4hfK9xUkA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Sait, S.M.</creator><creator>Ali, M.I.</creator><creator>Zaidi, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Multiobjective VLSI cell placement using distributed simulated evolution algorithm</title><author>Sait, S.M. ; Ali, M.I. ; Zaidi, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d5f4a07944ceffd4f13f3f2dc01c6ce8f37e4422cae0c77088e4bb728b8a0f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustical engineering</topic><topic>Approximation algorithms</topic><topic>Fuzzy logic</topic><topic>Partitioning algorithms</topic><topic>Power dissipation</topic><topic>Runtime</topic><topic>Simulated annealing</topic><topic>Stochastic processes</topic><topic>Timing</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Sait, S.M.</creatorcontrib><creatorcontrib>Ali, M.I.</creatorcontrib><creatorcontrib>Zaidi, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sait, S.M.</au><au>Ali, M.I.</au><au>Zaidi, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiobjective VLSI cell placement using distributed simulated evolution algorithm</atitle><btitle>2005 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2005</date><risdate>2005</risdate><spage>6226</spage><epage>6229 Vol. 6</epage><pages>6226-6229 Vol. 6</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><isbn>9780780388345</isbn><isbn>0780388348</isbn><abstract>Simulated evolution (SimE) is a sound stochastic approximation algorithm based on the principles of adaptation. If properly engineered it is possible for SimE to reach near-optimal solutions in less time than simulated annealing. Nevertheless, depending on the size of the problem, it may have large run-time requirements. One practical approach to speed up the execution of the SimE algorithm is to parallelize it. This is all the more true for multi-objective cell placement, where the need to optimize conflicting objectives (interconnect wirelength, power dissipation, and timing performance) adds another level of difficulty. In this paper a distributed parallel SimE algorithm is presented for multiobjective VLSI standard cell placement. Fuzzy logic is used to integrate the costs of these objectives. The algorithm presented is based on random distribution of rows to individual processors in order to partition the problem and distribute computationally intensive tasks, while also efficiently traversing the complex search space. A series of experiments are performed on ISCAS-85/89 benchmarks to compare speedup with serial implementation and other earlier proposals. Discussion on comparison with parallel implementations of other iterative heuristics is included.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2005.1466063</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0271-4302
ispartof 2005 IEEE International Symposium on Circuits and Systems (ISCAS), 2005, p.6226-6229 Vol. 6
issn 0271-4302
2158-1525
language eng
recordid cdi_ieee_primary_1466063
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustical engineering
Approximation algorithms
Fuzzy logic
Partitioning algorithms
Power dissipation
Runtime
Simulated annealing
Stochastic processes
Timing
Very large scale integration
title Multiobjective VLSI cell placement using distributed simulated evolution algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiobjective%20VLSI%20cell%20placement%20using%20distributed%20simulated%20evolution%20algorithm&rft.btitle=2005%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Sait,%20S.M.&rft.date=2005&rft.spage=6226&rft.epage=6229%20Vol.%206&rft.pages=6226-6229%20Vol.%206&rft.issn=0271-4302&rft.eissn=2158-1525&rft.isbn=9780780388345&rft.isbn_list=0780388348&rft_id=info:doi/10.1109/ISCAS.2005.1466063&rft_dat=%3Cieee_6IE%3E1466063%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1466063&rfr_iscdi=true