Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time

Scintillation detectors must tolerate a wide range of ambient temperatures and strong temperature slopes when used in outdoor applications. Such demanding conditions are typical for all homeland security applications. An effective and efficient detector stabilization compensating for temperature dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pausch, G., Stein, J., Teofilov, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850 Vol. 2
container_issue
container_start_page 846
container_title
container_volume 2
creator Pausch, G.
Stein, J.
Teofilov, N.
description Scintillation detectors must tolerate a wide range of ambient temperatures and strong temperature slopes when used in outdoor applications. Such demanding conditions are typical for all homeland security applications. An effective and efficient detector stabilization compensating for temperature dependent gain shifts is essential to maintain energy calibration and resolution. Reliable, well established solutions are based on radioactive reference sources; however, alternatives are much asked for. The gain shift correction for the temperature dependence of the scintillation light output requires elaborate hard and software means without a reference source. Strong and rapid temperature changes further complicate the situation as there is no thermal equilibrium in the detector but rather a temperature field. Our paper demonstrates the measurement of an effective scintillator temperature by analyzing the pulse shape of detector signals. The pulse shape is correlated with the scintillation light decay time which can be extracted online from the digitized signals. The decay time data are used to eliminate all the temperature determined system gain shifts without radioactive reference source. This new stabilization procedure has been verified in extensive climate chamber measurements. The results are discussed.
doi_str_mv 10.1109/NSSMIC.2004.1462340
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1462340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1462340</ieee_id><sourcerecordid>1462340</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-163752aea561856fb3e2dc9c970d867a201e9cf4bfedd33275ef8c4ed9ddd39e3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc1LopR-QTf-gZTxI3HMDlU8KhVYFNaVa09ao7yUuBLhX_hXUlqkIo00mnvu3MUlZMxgwhjom5fF4nk2nXAAOWEy4ULCCRlplUI_IlXA4JQMeKxUBCnXZ_8YiHMyYL0eiSSWl-SqbT8AOAgpB-R7EczK5_7Ll2vaWl8Gn-cm-KqkDgPaUDW07dqARXv7qzSFL_e8ymjY4NFTb-19NTYmbBuk-FnnlQ-74J3vGDmssXRYWvxLyf16E2i9zdsdtaajwRd4TS4y00ujwx6S94f7t-lTNH99nE3v5pFnKg4RS4SKuUETJyyNk2wlkDurrVbg0kQZDgy1zeQqQ-eE4CrGLLUSnXb9rVEMyXif6xFxWTe-ME23PDQtfgDGinRG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pausch, G. ; Stein, J. ; Teofilov, N.</creator><creatorcontrib>Pausch, G. ; Stein, J. ; Teofilov, N.</creatorcontrib><description>Scintillation detectors must tolerate a wide range of ambient temperatures and strong temperature slopes when used in outdoor applications. Such demanding conditions are typical for all homeland security applications. An effective and efficient detector stabilization compensating for temperature dependent gain shifts is essential to maintain energy calibration and resolution. Reliable, well established solutions are based on radioactive reference sources; however, alternatives are much asked for. The gain shift correction for the temperature dependence of the scintillation light output requires elaborate hard and software means without a reference source. Strong and rapid temperature changes further complicate the situation as there is no thermal equilibrium in the detector but rather a temperature field. Our paper demonstrates the measurement of an effective scintillator temperature by analyzing the pulse shape of detector signals. The pulse shape is correlated with the scintillation light decay time which can be extracted online from the digitized signals. The decay time data are used to eliminate all the temperature determined system gain shifts without radioactive reference source. This new stabilization procedure has been verified in extensive climate chamber measurements. The results are discussed.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 9780780387003</identifier><identifier>ISBN: 0780387007</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 9780780387010</identifier><identifier>EISBN: 0780387015</identifier><identifier>DOI: 10.1109/NSSMIC.2004.1462340</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Maintenance ; Pulse measurements ; Pulse shaping methods ; Scintillation counters ; Shape measurement ; Solid scintillation detectors ; Temperature dependence ; Temperature distribution ; Terrorism</subject><ispartof>IEEE Symposium Conference Record Nuclear Science 2004, 2004, Vol.2, p.846-850 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1462340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1462340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pausch, G.</creatorcontrib><creatorcontrib>Stein, J.</creatorcontrib><creatorcontrib>Teofilov, N.</creatorcontrib><title>Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time</title><title>IEEE Symposium Conference Record Nuclear Science 2004</title><addtitle>NSSMIC</addtitle><description>Scintillation detectors must tolerate a wide range of ambient temperatures and strong temperature slopes when used in outdoor applications. Such demanding conditions are typical for all homeland security applications. An effective and efficient detector stabilization compensating for temperature dependent gain shifts is essential to maintain energy calibration and resolution. Reliable, well established solutions are based on radioactive reference sources; however, alternatives are much asked for. The gain shift correction for the temperature dependence of the scintillation light output requires elaborate hard and software means without a reference source. Strong and rapid temperature changes further complicate the situation as there is no thermal equilibrium in the detector but rather a temperature field. Our paper demonstrates the measurement of an effective scintillator temperature by analyzing the pulse shape of detector signals. The pulse shape is correlated with the scintillation light decay time which can be extracted online from the digitized signals. The decay time data are used to eliminate all the temperature determined system gain shifts without radioactive reference source. This new stabilization procedure has been verified in extensive climate chamber measurements. The results are discussed.</description><subject>Calibration</subject><subject>Maintenance</subject><subject>Pulse measurements</subject><subject>Pulse shaping methods</subject><subject>Scintillation counters</subject><subject>Shape measurement</subject><subject>Solid scintillation detectors</subject><subject>Temperature dependence</subject><subject>Temperature distribution</subject><subject>Terrorism</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>9780780387003</isbn><isbn>0780387007</isbn><isbn>9780780387010</isbn><isbn>0780387015</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRc1LopR-QTf-gZTxI3HMDlU8KhVYFNaVa09ao7yUuBLhX_hXUlqkIo00mnvu3MUlZMxgwhjom5fF4nk2nXAAOWEy4ULCCRlplUI_IlXA4JQMeKxUBCnXZ_8YiHMyYL0eiSSWl-SqbT8AOAgpB-R7EczK5_7Ll2vaWl8Gn-cm-KqkDgPaUDW07dqARXv7qzSFL_e8ymjY4NFTb-19NTYmbBuk-FnnlQ-74J3vGDmssXRYWvxLyf16E2i9zdsdtaajwRd4TS4y00ujwx6S94f7t-lTNH99nE3v5pFnKg4RS4SKuUETJyyNk2wlkDurrVbg0kQZDgy1zeQqQ-eE4CrGLLUSnXb9rVEMyXif6xFxWTe-ME23PDQtfgDGinRG</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Pausch, G.</creator><creator>Stein, J.</creator><creator>Teofilov, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2004</creationdate><title>Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time</title><author>Pausch, G. ; Stein, J. ; Teofilov, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-163752aea561856fb3e2dc9c970d867a201e9cf4bfedd33275ef8c4ed9ddd39e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Calibration</topic><topic>Maintenance</topic><topic>Pulse measurements</topic><topic>Pulse shaping methods</topic><topic>Scintillation counters</topic><topic>Shape measurement</topic><topic>Solid scintillation detectors</topic><topic>Temperature dependence</topic><topic>Temperature distribution</topic><topic>Terrorism</topic><toplevel>online_resources</toplevel><creatorcontrib>Pausch, G.</creatorcontrib><creatorcontrib>Stein, J.</creatorcontrib><creatorcontrib>Teofilov, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pausch, G.</au><au>Stein, J.</au><au>Teofilov, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time</atitle><btitle>IEEE Symposium Conference Record Nuclear Science 2004</btitle><stitle>NSSMIC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>846</spage><epage>850 Vol. 2</epage><pages>846-850 Vol. 2</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>9780780387003</isbn><isbn>0780387007</isbn><eisbn>9780780387010</eisbn><eisbn>0780387015</eisbn><abstract>Scintillation detectors must tolerate a wide range of ambient temperatures and strong temperature slopes when used in outdoor applications. Such demanding conditions are typical for all homeland security applications. An effective and efficient detector stabilization compensating for temperature dependent gain shifts is essential to maintain energy calibration and resolution. Reliable, well established solutions are based on radioactive reference sources; however, alternatives are much asked for. The gain shift correction for the temperature dependence of the scintillation light output requires elaborate hard and software means without a reference source. Strong and rapid temperature changes further complicate the situation as there is no thermal equilibrium in the detector but rather a temperature field. Our paper demonstrates the measurement of an effective scintillator temperature by analyzing the pulse shape of detector signals. The pulse shape is correlated with the scintillation light decay time which can be extracted online from the digitized signals. The decay time data are used to eliminate all the temperature determined system gain shifts without radioactive reference source. This new stabilization procedure has been verified in extensive climate chamber measurements. The results are discussed.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2004.1462340</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof IEEE Symposium Conference Record Nuclear Science 2004, 2004, Vol.2, p.846-850 Vol. 2
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_1462340
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Maintenance
Pulse measurements
Pulse shaping methods
Scintillation counters
Shape measurement
Solid scintillation detectors
Temperature dependence
Temperature distribution
Terrorism
title Stabilizing scintillation detector systems: determination of the scintillator temperature exploiting the temperature dependence of the light pulse decay time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilizing%20scintillation%20detector%20systems:%20determination%20of%20the%20scintillator%20temperature%20exploiting%20the%20temperature%20dependence%20of%20the%20light%20pulse%20decay%20time&rft.btitle=IEEE%20Symposium%20Conference%20Record%20Nuclear%20Science%202004&rft.au=Pausch,%20G.&rft.date=2004&rft.volume=2&rft.spage=846&rft.epage=850%20Vol.%202&rft.pages=846-850%20Vol.%202&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=9780780387003&rft.isbn_list=0780387007&rft_id=info:doi/10.1109/NSSMIC.2004.1462340&rft_dat=%3Cieee_6IE%3E1462340%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780387010&rft.eisbn_list=0780387015&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1462340&rfr_iscdi=true