An efficient turnkey agent for repeated trading with overall budget and preferences

For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vermeulen, I.B., Somefun, D.J.A., La Poutre, J.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue
container_start_page 1073
container_title
container_volume 2
creator Vermeulen, I.B.
Somefun, D.J.A.
La Poutre, J.A.
description For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive
doi_str_mv 10.1109/ICCIS.2004.1460738
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1460738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1460738</ieee_id><sourcerecordid>1460738</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-3b0e5afc5473045cfd72db769cb1eee07de531cb99af50759c94dd0d0216c143</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMiqHN_QG_yB1rfNEnTXI7iR2HgxXY_0uRNjdaspJmyf-9kOzeHBw4PHEIeGJSMgX7q2rbblBWAKJmoQfHmityBaoA3teDihizn-RNO4VqwSt-SzSpS9D7YgDHTfEjxC4_UDP_k94kmnNBkdDQn40Ic6G_IH3T_g8mMI-0PbsBMTXR0SugxYbQ435Nrb8YZl5dekO3L87Z9K9bvr127WheBgcwF7wGl8VYKxUFI652qXK9qbXuGiKAcSs5sr7XxEpTUVgvnwEHFassEX5DHszac1rsphW-TjrvLbf4HsvRPRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</creator><creatorcontrib>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</creatorcontrib><description>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</description><identifier>ISBN: 0780386434</identifier><identifier>ISBN: 9780780386433</identifier><identifier>DOI: 10.1109/ICCIS.2004.1460738</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerated aging ; Application software ; Autonomous agents ; Computer science ; Delay ; Fluctuations ; Marketing and sales ; Mathematics ; Stochastic processes ; Technology management</subject><ispartof>IEEE Conference on Cybernetics and Intelligent Systems, 2004, 2004, Vol.2, p.1073-1078</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1460738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1460738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vermeulen, I.B.</creatorcontrib><creatorcontrib>Somefun, D.J.A.</creatorcontrib><creatorcontrib>La Poutre, J.A.</creatorcontrib><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><title>IEEE Conference on Cybernetics and Intelligent Systems, 2004</title><addtitle>ICCIS</addtitle><description>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</description><subject>Accelerated aging</subject><subject>Application software</subject><subject>Autonomous agents</subject><subject>Computer science</subject><subject>Delay</subject><subject>Fluctuations</subject><subject>Marketing and sales</subject><subject>Mathematics</subject><subject>Stochastic processes</subject><subject>Technology management</subject><isbn>0780386434</isbn><isbn>9780780386433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMiqHN_QG_yB1rfNEnTXI7iR2HgxXY_0uRNjdaspJmyf-9kOzeHBw4PHEIeGJSMgX7q2rbblBWAKJmoQfHmityBaoA3teDihizn-RNO4VqwSt-SzSpS9D7YgDHTfEjxC4_UDP_k94kmnNBkdDQn40Ic6G_IH3T_g8mMI-0PbsBMTXR0SugxYbQ435Nrb8YZl5dekO3L87Z9K9bvr127WheBgcwF7wGl8VYKxUFI652qXK9qbXuGiKAcSs5sr7XxEpTUVgvnwEHFassEX5DHszac1rsphW-TjrvLbf4HsvRPRg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Vermeulen, I.B.</creator><creator>Somefun, D.J.A.</creator><creator>La Poutre, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><author>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-3b0e5afc5473045cfd72db769cb1eee07de531cb99af50759c94dd0d0216c143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Accelerated aging</topic><topic>Application software</topic><topic>Autonomous agents</topic><topic>Computer science</topic><topic>Delay</topic><topic>Fluctuations</topic><topic>Marketing and sales</topic><topic>Mathematics</topic><topic>Stochastic processes</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermeulen, I.B.</creatorcontrib><creatorcontrib>Somefun, D.J.A.</creatorcontrib><creatorcontrib>La Poutre, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vermeulen, I.B.</au><au>Somefun, D.J.A.</au><au>La Poutre, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient turnkey agent for repeated trading with overall budget and preferences</atitle><btitle>IEEE Conference on Cybernetics and Intelligent Systems, 2004</btitle><stitle>ICCIS</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1073</spage><epage>1078</epage><pages>1073-1078</pages><isbn>0780386434</isbn><isbn>9780780386433</isbn><abstract>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2004.1460738</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780386434
ispartof IEEE Conference on Cybernetics and Intelligent Systems, 2004, 2004, Vol.2, p.1073-1078
issn
language eng
recordid cdi_ieee_primary_1460738
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accelerated aging
Application software
Autonomous agents
Computer science
Delay
Fluctuations
Marketing and sales
Mathematics
Stochastic processes
Technology management
title An efficient turnkey agent for repeated trading with overall budget and preferences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20turnkey%20agent%20for%20repeated%20trading%20with%20overall%20budget%20and%20preferences&rft.btitle=IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems,%202004&rft.au=Vermeulen,%20I.B.&rft.date=2004&rft.volume=2&rft.spage=1073&rft.epage=1078&rft.pages=1073-1078&rft.isbn=0780386434&rft.isbn_list=9780780386433&rft_id=info:doi/10.1109/ICCIS.2004.1460738&rft_dat=%3Cieee_6IE%3E1460738%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1460738&rfr_iscdi=true