An efficient turnkey agent for repeated trading with overall budget and preferences
For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent h...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | |
container_start_page | 1073 |
container_title | |
container_volume | 2 |
creator | Vermeulen, I.B. Somefun, D.J.A. La Poutre, J.A. |
description | For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive |
doi_str_mv | 10.1109/ICCIS.2004.1460738 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1460738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1460738</ieee_id><sourcerecordid>1460738</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-3b0e5afc5473045cfd72db769cb1eee07de531cb99af50759c94dd0d0216c143</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMiqHN_QG_yB1rfNEnTXI7iR2HgxXY_0uRNjdaspJmyf-9kOzeHBw4PHEIeGJSMgX7q2rbblBWAKJmoQfHmityBaoA3teDihizn-RNO4VqwSt-SzSpS9D7YgDHTfEjxC4_UDP_k94kmnNBkdDQn40Ic6G_IH3T_g8mMI-0PbsBMTXR0SugxYbQ435Nrb8YZl5dekO3L87Z9K9bvr127WheBgcwF7wGl8VYKxUFI652qXK9qbXuGiKAcSs5sr7XxEpTUVgvnwEHFassEX5DHszac1rsphW-TjrvLbf4HsvRPRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</creator><creatorcontrib>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</creatorcontrib><description>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</description><identifier>ISBN: 0780386434</identifier><identifier>ISBN: 9780780386433</identifier><identifier>DOI: 10.1109/ICCIS.2004.1460738</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerated aging ; Application software ; Autonomous agents ; Computer science ; Delay ; Fluctuations ; Marketing and sales ; Mathematics ; Stochastic processes ; Technology management</subject><ispartof>IEEE Conference on Cybernetics and Intelligent Systems, 2004, 2004, Vol.2, p.1073-1078</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1460738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1460738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vermeulen, I.B.</creatorcontrib><creatorcontrib>Somefun, D.J.A.</creatorcontrib><creatorcontrib>La Poutre, J.A.</creatorcontrib><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><title>IEEE Conference on Cybernetics and Intelligent Systems, 2004</title><addtitle>ICCIS</addtitle><description>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</description><subject>Accelerated aging</subject><subject>Application software</subject><subject>Autonomous agents</subject><subject>Computer science</subject><subject>Delay</subject><subject>Fluctuations</subject><subject>Marketing and sales</subject><subject>Mathematics</subject><subject>Stochastic processes</subject><subject>Technology management</subject><isbn>0780386434</isbn><isbn>9780780386433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMiqHN_QG_yB1rfNEnTXI7iR2HgxXY_0uRNjdaspJmyf-9kOzeHBw4PHEIeGJSMgX7q2rbblBWAKJmoQfHmityBaoA3teDihizn-RNO4VqwSt-SzSpS9D7YgDHTfEjxC4_UDP_k94kmnNBkdDQn40Ic6G_IH3T_g8mMI-0PbsBMTXR0SugxYbQ435Nrb8YZl5dekO3L87Z9K9bvr127WheBgcwF7wGl8VYKxUFI652qXK9qbXuGiKAcSs5sr7XxEpTUVgvnwEHFassEX5DHszac1rsphW-TjrvLbf4HsvRPRg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Vermeulen, I.B.</creator><creator>Somefun, D.J.A.</creator><creator>La Poutre, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>An efficient turnkey agent for repeated trading with overall budget and preferences</title><author>Vermeulen, I.B. ; Somefun, D.J.A. ; La Poutre, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-3b0e5afc5473045cfd72db769cb1eee07de531cb99af50759c94dd0d0216c143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Accelerated aging</topic><topic>Application software</topic><topic>Autonomous agents</topic><topic>Computer science</topic><topic>Delay</topic><topic>Fluctuations</topic><topic>Marketing and sales</topic><topic>Mathematics</topic><topic>Stochastic processes</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermeulen, I.B.</creatorcontrib><creatorcontrib>Somefun, D.J.A.</creatorcontrib><creatorcontrib>La Poutre, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vermeulen, I.B.</au><au>Somefun, D.J.A.</au><au>La Poutre, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient turnkey agent for repeated trading with overall budget and preferences</atitle><btitle>IEEE Conference on Cybernetics and Intelligent Systems, 2004</btitle><stitle>ICCIS</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1073</spage><epage>1078</epage><pages>1073-1078</pages><isbn>0780386434</isbn><isbn>9780780386433</isbn><abstract>For various e-commerce applications autonomous agents can do the actual trading on behalf of their users. We consider an agent who trades repeatedly on behalf of his user, given an overall budget and preferences per time step, both specified at the start. For many e-commerce settings such an agent has limited computational resources, limited prior information concerning price fluctuations, and little time for online learning. We therefore develop an efficient heuristic that requires little prior information to work well from the start, even for very roughed nonsmooth problem instances. Extensive computer experiments conducted for a wide variety of customer preferences show virtually no difference in performance between a dynamic programming (DP) approach and the developed heuristic carrying out the agent's task. The DP approach has, however, the important drawback of generally being too computationally intensive</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2004.1460738</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780386434 |
ispartof | IEEE Conference on Cybernetics and Intelligent Systems, 2004, 2004, Vol.2, p.1073-1078 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1460738 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accelerated aging Application software Autonomous agents Computer science Delay Fluctuations Marketing and sales Mathematics Stochastic processes Technology management |
title | An efficient turnkey agent for repeated trading with overall budget and preferences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20turnkey%20agent%20for%20repeated%20trading%20with%20overall%20budget%20and%20preferences&rft.btitle=IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems,%202004&rft.au=Vermeulen,%20I.B.&rft.date=2004&rft.volume=2&rft.spage=1073&rft.epage=1078&rft.pages=1073-1078&rft.isbn=0780386434&rft.isbn_list=9780780386433&rft_id=info:doi/10.1109/ICCIS.2004.1460738&rft_dat=%3Cieee_6IE%3E1460738%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1460738&rfr_iscdi=true |