BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function

Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Satapathy, J.K., Das, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue
container_start_page 472
container_title
container_volume
creator Satapathy, J.K.
Das, S.
description Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.
doi_str_mv 10.1109/SPCOM.2004.1458504
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1458504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1458504</ieee_id><sourcerecordid>1458504</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18f53d977e243486a186e1878abcf3b42eb5bf1652ef16e132099c46539bdf143</originalsourceid><addsrcrecordid>eNotUM1OwzAYi4SQgLEXgEteoCVpfnuEamNIY0P8nKe0_TIFtWlJ2knb01PEfLAt2fLBCN1RklJK8oePt2L7mmaE8JRyoQXhF-iGKE2YlorzKzSP8ZtM4IITLa8RPC3ecQ_BdqE1vgLs2j50B2jBD7iz2Hi83GxwaSLUGH5G07gIAY_R-T224-l0xMPopyy6fdu52jTYVIM7mMF1fir46s_coktrmgjzs87Q13LxWayS9fb5pXhcJ44qMSRUW8HqXCnIOONaGqolUK20KSvLSp5BKUpLpchgYqAsI3lecSlYXtaWcjZD9_-7DgB2fXCtCcfd-Qn2C38_VXo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Satapathy, J.K. ; Das, S.</creator><creatorcontrib>Satapathy, J.K. ; Das, S.</creatorcontrib><description>Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.</description><identifier>ISBN: 0780386744</identifier><identifier>ISBN: 9780780386747</identifier><identifier>DOI: 10.1109/SPCOM.2004.1458504</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Decision feedback equalizers ; Fuzzy control ; Fuzzy logic ; Fuzzy neural networks ; Interference ; Multi-layer neural network ; Neural networks ; Neurofeedback ; Nonlinear distortion</subject><ispartof>2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04, 2004, p.472-475</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1458504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1458504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><title>BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function</title><title>2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04</title><addtitle>SPCOM</addtitle><description>Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.</description><subject>Bit error rate</subject><subject>Decision feedback equalizers</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Interference</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Nonlinear distortion</subject><isbn>0780386744</isbn><isbn>9780780386747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1OwzAYi4SQgLEXgEteoCVpfnuEamNIY0P8nKe0_TIFtWlJ2knb01PEfLAt2fLBCN1RklJK8oePt2L7mmaE8JRyoQXhF-iGKE2YlorzKzSP8ZtM4IITLa8RPC3ecQ_BdqE1vgLs2j50B2jBD7iz2Hi83GxwaSLUGH5G07gIAY_R-T224-l0xMPopyy6fdu52jTYVIM7mMF1fir46s_coktrmgjzs87Q13LxWayS9fb5pXhcJ44qMSRUW8HqXCnIOONaGqolUK20KSvLSp5BKUpLpchgYqAsI3lecSlYXtaWcjZD9_-7DgB2fXCtCcfd-Qn2C38_VXo</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Satapathy, J.K.</creator><creator>Das, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function</title><author>Satapathy, J.K. ; Das, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18f53d977e243486a186e1878abcf3b42eb5bf1652ef16e132099c46539bdf143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bit error rate</topic><topic>Decision feedback equalizers</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Interference</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Nonlinear distortion</topic><toplevel>online_resources</toplevel><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Satapathy, J.K.</au><au>Das, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function</atitle><btitle>2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04</btitle><stitle>SPCOM</stitle><date>2004</date><risdate>2004</risdate><spage>472</spage><epage>475</epage><pages>472-475</pages><isbn>0780386744</isbn><isbn>9780780386747</isbn><abstract>Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.</abstract><pub>IEEE</pub><doi>10.1109/SPCOM.2004.1458504</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780386744
ispartof 2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04, 2004, p.472-475
issn
language eng
recordid cdi_ieee_primary_1458504
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit error rate
Decision feedback equalizers
Fuzzy control
Fuzzy logic
Fuzzy neural networks
Interference
Multi-layer neural network
Neural networks
Neurofeedback
Nonlinear distortion
title BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BER%20performance%20improvement%20of%20an%20FNN%20based%20equaliser%20using%20fuzzy%20tuned%20sigmoidal%20activation%20function&rft.btitle=2004%20International%20Conference%20on%20Signal%20Processing%20and%20Communications,%202004.%20SPCOM%20'04&rft.au=Satapathy,%20J.K.&rft.date=2004&rft.spage=472&rft.epage=475&rft.pages=472-475&rft.isbn=0780386744&rft.isbn_list=9780780386747&rft_id=info:doi/10.1109/SPCOM.2004.1458504&rft_dat=%3Cieee_6IE%3E1458504%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1458504&rfr_iscdi=true